
.7 TECHNICAL MEMORANDUM

TM 405-90
D(~1 1 DECEMBER 1990

zg

JOINT DATA SYSTEMS
SUPPORT CENTER

11".

v

SOFTWARE STANDARDS AND
PROCEDURES MANUAL FOR THE

JNGG GRAPHICS PROGRAM

OTIC
S ELECTEJAN 3991 DiE

APPROVED FOR PUBLIC
RELEASE

DISTRIBUTION UNLIMITED

91 1 29 (82

RECORD OF CHANGES

Change Dated Date Entered Signature of Person Making Change
Number

DCA FORM 65
MAR 87

JOINT DATA SYSTEMS SUPPORT CENTER

Technical Memorandum TM 405-90

1 December 1990

SiOFTWARE STANDARDS AND PROCEDURES MANUAL

FOR THE

JNGG GRAPHICS PROGRAM

SUBMITTED BY: APPROVED BY:

eanne L. Muenzen Thomas R. Eppers n

//Acting Chief Deputy Director
Information Systems Branch NMCS ADP Directorate

Copies of this document may be obtained from the Defense Tecnhical Information
Center, Cameron Station, Alexandria, Virginia 22314-6145. Approved for

public release; distribution -nlimited.

ACKNOWLEDGMENT

This Software Standards and Procedures Manual (SSPM) was prepared under the

general direction of the Chief, Information Systems Branch (JNGG); the Chief,

General Applications Division (JNG); and the Deputy Director, National

Military Command System (NMCS) Automated Data Processing (ADP) Directorate

(JN).

Aeces:In Ror

NTIS GRA&I

DTIC TAB

Unannounced
Justification

By

Distribution/

Availability Codea

Avail and/or

Dist Special

CONTENTS

Section Page

ACKNOWLEDGMENT..........................ii

ABSTRACT............................xi

1. SCOPE..............................1-1
1.1 Identification...................................1-1
1.1.1 Graphic Information Presentation System (GIPSY). 1-1
1.1.2 GIPSYmate 1-2
1.1.3 Terra Plot (TPLOT).....................1-2
1.1.4 Joint Sti.f Mapping System (JSMS). 1-3
1.1.5 Mapping a-d Graphic Information Capability

(MAGIC)........................1-4
1.2 Purpose 1-6
1.3 Introduction.........................1-7

2. REFERENCED DOCUMENTS...... 2-1
2.1 Governneat Documents.....................2-1
2.2 Non-Government Documents...................2-2
2.3 Other References.......................2-2

3. SOFTWARE STANDARDS AND PROCEDURES. 3-1
3.1 Software Development Tools, Techniques,

Methodologies 3-1
3.1.1 The JDSSC Software Release Process 3-1
3.1.1.1 Release Definition....................3-1
3.1.1.2 Release Plan (RP) 3-2
3.1.1.2.1 Content 3-2
3.1.1.2.2 Release Success Criteria 3-2
3.1.1.2.3 Product-Oriented Release 3-2
3.1.1.3 Release Activities and Functions 3-3
3.1.1.3.1 Release Process Flow 3-3
3.1.1.3.2 Role of Documentation. 3-4
3.1.1.3.3 Role of Reviews 3-5
3.1.1.3.3.1 Product Quality Assessment 3-5
3.1.1.3.3.2 Process Quality Assessment 3-6
3.1.1.3.3.2.1 Objectives.....................3-6
3.1.1.3.3.2.2 Metrics 3-7
3.1.1.3.4 Role of Configuration Management 3-7
3.1.1.3.4.1 Baseline Concept...................3-7
3.1.1.3.4.2 CM Activities 3-7
3.1.2 Applicable Development Standards 3-8
3.2 Critical Low-Level CSC and CSU Selection Criteria 3-8
3.3 Software Development Library 3-9
3.4 Software Development Files..................3-9
3.4.1 Creation and Maintenance Responsibility 3-10
3.4.2 Format and Contents. 3-10

iii

Section Page

3.4.2.1 Unit Status........................3-10
3.4.2.2 Requirements Specification...............3-12
3.4.2.3 Detailed Design. 3-12
3.4.2.4 Operating Instructions 3-12
3.4.2.5 Code..........................3-12
3.4.2.6 Unit Test Plan and Procedures 3-12
3.4.2.7 TesL Results.......................3-12
3.4.2.8 Deficiency Report Changes 3-13
3.4.2.9 Audits and Reviews 3-13
3.4.2.10 Notes..........................3-13
3.4.3 Maintenance Procedures 3-13
3.5 Documentation Formats for Informal Tests 3-
3.5.1 Scope of Testing 3-14
3.5.2 Test Plan..........................3-14
1.5.3 Test Procedure.......................3-16
3.5.4 Actual Test Results. 3-16
3.6 Design and Coding Standards. 3-16
3.6.1 Ada Style Specifications 3-16
3.6.1.1 Structurt Guidelines 3-16
3.6.1.1.1 Subprogram Gohesion 3-16

3.6.1.1.2 Packages........................3-16
3.6.1.1.2.1 Utilization. 3-17
3.6.1.1.2.2 Nesting........................3-17
3.6.1.1.3 Visibility.......................3-18
3.6.1.1.3.1 Scope.........................3-18
3.6.1.1.3.2 The Package STANDARD................3-19
3.6.1.1.4 Tasks.........................3-19
3.6.1.1.4.1 Utiiization. 3-19
3.6.1.1.4.2 Nesting........................3-19
3.6.1.1.4.3 Visibility 3-19
3.6.1.1.5 Program Structure and Compilation Issues. 3-20
3.6.1.1.5.1 Program Units 3-20
3.6.1,1.5.2 WITH Clauses.....................3-20
3.6.1.1.5.3 Program Unit Dependencies 3-20
3.6.1.1.6 Exception Propagation 3-21
3.6.1.1.7 Generic Units......................3-21
3.6.1.1.7.1 Utilization. 3-21
3.6.1.1.7.2 Generic Library Units 3-21
3.6.1.1.7.3 Generic Instantiation 3-21
3.6.1.1.8 Encapsulation. 3-21
3.6.1,1.8.1 Representation Clauses and

Implementation-Dependent Features 3-22
3.6.1.1.8.2 Input-Output 3-22
3.6.1.2 Coding Guidelines. 3-22
3.6.1.2.1 Lexical Elements 3-22
3.6.1.2.1.1 The Package STANDARD................3-22
3.6.1.2.1.2 Comments.......................3-22
3.6.1.2.2 Declarations and Types 3-23

iv

PSection Page

3.6.1.2.2.1 Constants. 3-23
3.6.1.2.2.2 Types. 3-24
3.6.1.2.2.3 Enumeration Types. 3-24
3.6.1.2.2.4 Floating Types 3-24
3.6.1.2.2.5 Record Types 3-25
3.6.1.2.2.6 Access Types 3-25
3.6.1.2.2.7 Object Declarations. 3-25
3.6.1.2.3 Names and Expressions. 3-26
3.6.1.2.3.1 Aggregates 3-26
3.6.1.2.3.2 Static Expressions 3-27
3.6.1.2.3.3 Short-Circuit Control 3-27
3.6.1.2.3.4 Type Qualification.................3-27
3.6.1.2.4 Statements 3-28
3.6.1.2.4.1 Slice Statements 3-28
3.6.1.2.4.2 IF Statements. 3-28
3.6.1.2.4.3 CASE Statements. 3-28
3.6.1.2.4.4 Block Statements 3-28
3.6.1.2.4.5 EXIT Statements. 3-28
3.6.1.2.4.6 RETu-RN Statements. 3-29
3.6.1.2.4.7 COTO Statements. 3-29
3.6.1.2.5 Subprograms. 3-29
3.6.1.2.5.1 Parameters 3-29
3.6.1.2.5.2 Recursion. 3-29
3.6.1.2.5.3 Functions. 3-29P3.6.1.2.5.4 Overloading. 3-30
3..12.6 Packages 3-30
3.6.1.2.6.1 Initialization 3-30
3.6.1.2.6.2 Visible Variables. 3-30
3.6.1.2.7 Visibility 3-31
3.6.1.2.7.1 The USE Clause 3-31
3.6.1.2.7.2 Renaming Declarations 3-31
3.6.1.2.7.3 Redefinition 3-31
3.6.1.2.8 Tasks.........................3-31
3.6.1.2.8.1 Task Types 3-31
3.6.1.2.8.2 Task Termination3-32
3.6.1.2.8.3 Entries and ACCEPT Statements 3-32
3.6.1.2.8.4 DELAY Statement. 3-32
3.6.1.2.8.5 Task Synchronization................3-33
3.6.1.2.8.6 Priorities 3-33
3.6.1.2.8.7 A.BORT Statements 3-34
3.6.1.2.8.8 Shared Variables 3-34
3.6.1.2.8.9 Local Exception Handling..............3-34
3.6.1.2.9 Exceptions 3-35
3.6.1.2.9.1 Utilization. 3-35
3.6.1.2.9.2 Exception Handlers 3-35
3.6.1.2.9.3 RAISE Statements 3-36
3.6.1.2.9.4 Exception Propagation 3-36
3.6.1.2.9.5 Suppressing Checks 3-36

Pv

Section Page

3.6.1.2.10 G2eneric Units. 3-36
3.6.1.2.10.1 Generic Formal Subprograms.............3-37
3.6.1.2.10.2 Use of Attributes. 3-37
3.6.1.2.11 Representation Clauses and

Implementation-Dependent Features 3-37
3.6.1.2.11.1 Utilization. 3-37
3.6.1.2.11.2 Interrupts......................3-37
3.6.1.2.12 Input-Output 3-37
3.6.1.2.12.1 Text Formatting. 3-37
3.6.1.2.12.2 Low-Level Input-Output...............3-37
3.6.1.9.12.3 FORM Parameter 3-38
3.6.1.3 Format Guidelines. 3-38
3.6.1.3.1 Lexical Elements 3-38
3.6.1.3.1.1 ixzu.encation. 3-38
3.6.1.3.1.2 Character Set. 3-38
3.6.1.3.1.3 Uppercase/Lowercase. 3-38
3.6.1.3.1.4 Identifiers......................3-38
3.6.1.3.1.5 Spaces........................3-39
3.6.1.3.1.6 Blank Lines......................3-39
3.6.1.3.1.7 Continuations. 3-39
3.6.1.3.1.8 Comments.......................3-39
3.6.1.3.2 Declarations and Types 3-40
3.6.1.3.2.1 Commenting 3-40
3.6.1.3.2.2 Indentation. 3-40

S 3.6.1.3.2.3 Type Definitions 3-40
3.6.1.3.2.4 Object Declarations. 3-41
3.6.1.3.3 Names and Expressions. 3-41
3.6.1.3.3.1 Names.........................3-42
3.6.1.3.3.2 Parentheses. 3-42
3.6.1.3.3.3 Aggregates......................3-42
3.6.1.3.3.4 Continuation 3-43
3.6.1.3.4 Statements........................3-43
3.6.1.3.4.1 Statement Sequences. 3-43
3.6.1.3.4.2 IF Statements. 3-43
3.6.1.3.4.3 CASE Statements. 3-43
3.6.1.3.4.4 LOOP Statements. 3-44
3.6.1.3.4.5 Block Statement. 3-44
3.6.1.3.5 Subprograms.......................3-44
3.6.1.3.5.1 Subprogram Names 3-44
3.6.1.3.5.2 Subprogram Header. 3-45
3.6.1.3.5.3 Subprogram Declarations 3-45
3.6.1.3.5.4 Subprogram Bodies and Stubs 3-45
3.6.1.3.5.5 Named Parameter Association 3-47
3.6.1.3.6 Packages........................3-47
3.6.1.3.6.1 Package Names. 3-47
3.6.1.3.6.2 Package Header 3-48
3.6.1.3.6.3 Package Specifications...............3-48
3.6.1.3.6.4 Package Bodies and Stubs..............3-48

vi

Section Page

3.6.1.3.7 Tasks.........................3-49
3.6.1.3.7.1 Task and Entry Names 3-49
3.6.1.3.7.2 Task and Entry Headers...............3-49
3.6.1.3.7.3 Task Specifications. 3-49
3.6.1.3.7.4 Task Bodies and Stubs 3-50
3.6.1.3.7.5 ACCEPT Statements. 3-50
3.6.1.3.7.6 SELECT Statements. 3-51
3.6.1.3.7.7 Pragma Priority. 3-51
3.6.1.3.8 Compilation Units. 3-51
3.6.1.3.9 Exception Declarations 3-51
3.6.1.3.10 Ceneric Units. 3-51
3.6.1.3.10.1 Generic Declarations 3-52
3.6.1.3.10.2 Generic Instantiations...............3-52
3.6.1.3.11 Representation Clauses 3-52
3.6.2 C Style Specifications 3-52
3.6.2.1 Structure Guidelines 3-52
3.6.2.1.1 Functional Cohesion. 3-52
3.6.2.1.2 File Utilization 3-53
3.6.2.1.3 Scope of Visibility. 3-53
3.6.2.1.4 Program Structure and Compilation Issues. 3-54
3.6.2.1.4.1 Program Units. 3-54
3.6.2.1.4.2 INCLUDE Clauses. 3-54
3.6.2.1.4.3 Program Unit Dependencies 3-55
3.6.2.1.5 Implementation-Dependent Features 3-55

S 3.6.2.1.6 Use of Prototypes. 3-55
3.6.2.2 Coding Guidelines. 3-55
3.6.2.2.1 Declarations and Types 3-55
3.6.2.2.1.1 Constants.......................3-55
3.6.2.2.1.2 Enumeration Types. 3-55
3.6.2.2.1.3 Floating-Point Types 3-56
3.6.2.2.1.4 Object Declarations. 3-57
3 6.2.2.2 Preprocessing Guidelines...............3-57
3.6.2.2.2.1. Defined Constants. 3-57
3.6.2.2.2.1.1 Definitions Containing OpeLaLO 3-57
3.6.2.2.2.1.2 Need for Environmental Capability 3-58
3.6.2.2.2.1.3 Commenting Modifiability Limitations. 3-58
3.6.2.2.2.1.4 Relationships Between Definitions 3-58
3.6.2.2.2.1.5 Use of Expressions................3-58
3.6.2.2.2.1.6 Use of Standardized Environment-Dependent

Limits 3-59
3.6.2.2.2.2 Defined Types. 3-59
3.6.2.2.2.3 Standard Headers 3-60
3.6.2.2.2.3.1 Function Declarations 3-60
3.6.2.2.2.3.2 Local Headers. 3-60
3.6.2.2.2.4 Macro Functions. 3-60
3.6.2.2.2.4.1 Naming of Unsafe Macros 3-61
3.6.2.2.2.4.2 Invoking Unsafe Macros..............3-61
3.6.2.2.2.4.3 Safe Macro Usage 3-61

I vii

Section Page

3.6.2.2.2.5 Undefining3-61
3.6.2.2.2.6 Conditional Compilation3-61
3.6.2.2.2.6.1 Commenting-Out Code3-61
3.6.2.2.2.6.2 Usage of an Inclusion Sandwich 3-61
3.6.2.2.3 Guidelines for Scalars3-62
3.6.2.2.3.1 The Math Library3-62
3.6.2.2.3.1.1 Floating-Point to Integer Conversions3-62
3.6.2.2.3.1.2 Testing for Errors3-62
3.6.2.2.3.2 Character Tests3-62
3.6.2.2.3.3 Boolean Data3-62
3.6.2.2.3.4 Enumeration Types3-63
3.6.2.2.3.5 Range-Checking 3-63
3.6.2.2.3.5.1 Modifying Loop Control Variables 3-63
3.6.2.2.3.5.2 Inclusion of "One-Too-Far" Values 3-63
3.6.2.2.3.5.3 SizeT Type Usage3-63
3.6.2.2.3.6 Signed and Unsigned Arithmetic 3-64
3.6.2.2.3.6.1 Subtraction Between Unsigned Integers3-64
3.6.2.2.3.6.2 Usage of the Integer Modulo Macro (IMOD) 3-64
3.6.2.2.3.7 Overflow 3-65
3.6.2.2.3.8 Data Properties3-65
3.6.2.2.4 Arrays3-65
3.6.2.2.4.1 Array Data3-65
3.6.2.2.4.1.1 Storage Class Precedence3-65
3.6.2.2.4.1.2 Optional Initialization of Variables3-66
3.6.2.2.4.1.3 Array Properties 3-66
3.6.2.2.4.2 Sorting an Array3-67
3.6.2.2.5 Pointers 3-67
3.6.2.2.5.1 Declaration of Pointers3-67
3.6.2.2.5.2 Pointers to Scalars3-67
3.6.2.2.5.3 Dangling Pointers3-68

3.6.2.2.6 Structures 3-69
3.6.2.2.6.1 Records 3-69

3.6.2.2.6.2 Structures for Information Hiding 3-70
3.6.2.2.6.3 Propertics of Stru'tures3-70
3.6.2.2.r.4 Bit-Fields 3-71
3.6.2.2.6.5 Pointers to Structures3-72
3.6.2.2.7 Dynamic Storage Allocation3-73
3.6.2.2.7.1 Freed Storage 3-73
3.6.2.2.7.2 Dead Storage3-73
3.6.2.2.8 Opening Named Files3-74
3.6.2.2.9 Clean Compilations3-74
3.6.2.3 Format Guidelines3-74
3.6.2.3.1 Lexical Elements3-74
3.6.2.3.1.1 Indentation3-74
3.6.2.3.1.2 Character Set3-74
3.6.2.3.1.3 Uppercase/Lowercase3-74
3.6.2.3.1.4 Identifiers 3-74
3.6.2.3.1.5 Spaces 3-75

viii

Section Page

3.6.2.3.1.6 Blank Lines......................3-75
3.6.2.3.1.7 Continuations.....................3-75
3.6.2.3.1.8 Comments.......................3-75
3.6.2.3.2 Declarations and Types 3-75
3.6.2.3.2.1. Commenting......................3-75
3.6.2.3.2.2 Indentation......................3-76
3.6.2.3.2.3 Enumeration Types. 3-76
3.6.2.3.2.4 Object Declarations. 3-76
3.6.2.3.3 Names and Expressions. 3-76
3.6.2.3.3.1 Names........................3-76
3.6.2.3.3.2 Parentheses......................3-/6
3.6.2.3.3.3 Continuation 3-76
3.6.2.3.4 Statement Sequenc2s. 3-76
3.6.2.3. i Functions........................3- 6
3.6.2.3.5.1 Function Names 3-76
3.6.2.3.5.2 Function Header. 3-77
3.6.2.3.5.3 Function Definitions 3-77
3.6.2.3.6 Files.........................3-80
3.6.2.3.6.1 File Names......................3-80
3.6.2.3.6.2 File Header......................3-80
3.6.3 FORTRAN Language Coding Specifications............3-80
3.6.4 Ceneral Language Coding Specifications 3-80
3.6.4.1 Higher Order Language (HOL). 3-80
3.6.4.2 Control Constructs 3-82
3.6.4.3 Modularity........................3-82
3.6.4.4 Symbolic Parameters. 3-83
3.6.4.5 Naming.........................3-83
3.6.4.6 Mixed-Mode Operations. 3-83
3.6.4.7 Paragraphing, Blocking, and Indenting 3-83
3.6.4.8 Complicated Expressions. 3-83
3.6.4.9 Compound Expressions 3-83
3.6.4.10 Single Statement.....................3-83
3.6.4.11 Comments........................3-83
3.6.4.12 Error and Diagnostic Messages 3-84
3.6.5 Programming Languages and Graphics Standards........3-84
3.6.6 Diagramming Symbology and Standards 3-84
3.6.7 Documentation Standards. 3-87
3.7 Formial Reviews.......................3-87

4. NOTES.............................4-1
4.1 Bibliography.........................4-1
4.2 Terms and Abbreviations 4-3

DISTRIBUTION.........................5-1

STANDARD FORM 298 6-1

ix

Figure ILLUSTRATIONS Pg

3-1 Sample SDF Table of Contents 3-11
3-2 Sample Informal Test Documentation Table of Contents 3-15
3-3 Ada Language Header Comment Block 3-46
3-4 C Language Header Comment Block (CSU) 3-78
3-5 C Language Header Comment Block (CSC) 3-81
3-6 Cane and Sarson Metasymbols. 3-85
3-7 Booch Diagram Metasyrnbos 3-86

Sx

ABSTRACT

This Software Standards and Procedures Manual (SSPM) contains the standards,
procedures, guidelines, and restrictions to be used in tlie development of
software for the JNGG Graphics Program.

The major section of the SSPM is section 3 (Software Standards and
Procedures). That section is divided into seven major subsections. These
subsections include software development tools, techniques, end methodologies

(paragraph 3.1); critical lower-level Computer Software CompoiLent (CSC) and
Computer Software Unit (CSU) selection criteria (paragraph 3.2); software
development library (paragraph 3.3); software development files (paragraph

3.4); documentation formats frir informal tests (paragraph 3.5); design and

coding standards (paragraph 3.6); and formal reviews (paragraph 3.7).

The SSPM is a "living" document and will be modified as necessary to ensure
that software developed for the JNGG Graphics Program is consistent,

maintainable, and supportive of the JDSSC Release Process. k-

This manual supersedes the Software Standards and Procedures Manual for the
Graphic Information Presentation System (GIPSY) (configuration identifier
8719/88-SSPM-I15-*) delivered under Contract Number DCAI00-87-C-0064 and dated

4 October 1988.

0xi

. SECTION 1. SCOPE

The following paragraphs define the scope of the JNGG Graphics Program
Software Standards and Procedures Manual by providing the identification and
purpose of the program and presenting an introduction to the rest of the

document.

1.1 Identification

This Software Standards and Procedures Manual (SSPM) contains the standards

and procedures to be used during the development of all Computer Software
Configuration Items (CSCIs) and/or Subsystems for all projects comprising the
JNGG Graphics Program. The pertinent projects are identified in the following

subparagraphs.

1.1.1 Graphic Tnformation Presentation System (GIPSY). CIPSY provides a

general-purpose graphics capability that operates on the Worldwide Military
Command and Control System (WWMCCS) computer--a Honeywell 6080 mainframe. The
system supports the data presentation needs of the JDSSC, which includes all

of Lhe WWMCCS sites.

It combines the tools of data retrieval; information processing; and tabular,
formatted, graphic, and geographic reports into a single, integrated, on-line,
interactive system. It is a file-and data-independent system that is driven

by a high level user-oriented language. The graphic capabilities are
implemented using a device-independent approach that allows the single
integrated system to suppurt multiple, dissimilar devices.

GIPSY effectively serves as an information handling system to connect the
user's database to a large set of on-line interactive query and report

capabilities. GIPSY can even be run in the batch environment to support

requirements involving high-volume output.

GIPSY consists of eight separately loadable modules as listed below:

a. Executive Module (GIPSY)

b. Language Processor (SYNTAX)

c. Data Selection (DATSEL)

d. Matrix Generation (MTXGEN)

e. Geographic Displays (GEOMOD)

f. Graphic Displays (DISPLA)

g. Plotter Interface (GMPS)

h. Formatted Report Processing (GDRMOD).

O 1-1

1.1.2 GIPSYmate. GIPSYmate has its roots in the Common User Contract (CUC)
awarded to the International Business Machines (IBM) Corporation on 5 October
1984. Through that contract, IBM developed the WWMCCS Information System
(WIS) Workstation (WWS) Early Product which is based on the IBM Personal
Computer (PC/XT). The WWS Early Product has a resolution of 720 X 350 pixels
and is configured with 640 kilobytes (Kbytes) of internal memory, two
removable 5 megabyte (Mbyte) hard disks, and one 5.25 inch floppy disk drive
capable of storing 360 Kbytes. It is supplied with commercially-available
business graphics software (Energraphics) which produces bar, pie, and line
charts, but will not satisfy the graphics requirements of the WWMCCS
community. A WIS Joint Program Management Office (JPMO) Letter of Technical
Support Requirement (TSR) tasked the JDSSC to design and develop an interim
graphics interface between the WWS Early Product and the H6000-based Graphic
Information Presentation System (GIPSY). This interface, developed for the
eight-color version WWS Early Product, provides the WWS Early Product user
with access to all GIPSY capabilities via the Honeywell Visual Information
Processor (VIP) 7705 bisynchronous protocol.

The Initial Operational Capability (IOC) of the graphics interface was
successfully demonstrated to the WIS Joint Program Manager (JPM) on 19 March
1986 and released to the user community as GIPSYmate 1.0, August 1986. As a
result of the demonstration, the WIS JPMO tasked the JDSSC to remove certain
limitations present in the IOC as well as to provide the WWS Early Product
user community with several capabilities that were available for the now
defunct WWMCCS Standard Graphics Terminal (WSGT) through the WSGT Intelligent
Terminal System (WITS) Briefing Aids subsystem. These capabilities were
integrated into GIPSYmate and made available to the users with GIPSYmate
Release 2.0, April 1987.

Suppor- of an additional VIP emulator, the Enhanced Terminal Capability (ETC),
produced by ECDSC, USEUCOM, was integrated into GIPSYmate and made available
to the users with GIPSYmate Release 3.0, August 1988. Enhancements of a Disk
Operating System (DOS) window and an impending alarm timeout notification were
added to GIPSYmate and made available with GIPSYmate Release 3.1, April 1989.

The Joint Staff tasked the WIS JPMO with the development of the Joint
Operation Planning and Execution System (JOPES). The development of JOPES
requires the support of a graphics software system. The WIS JPMO plans to
utilize the Graphic Information Presentation System (GIPSY) and GIPSYmate to
provide the graphics support for JOPES. In order for GIPSYmate to function in
the JOPES environment and exploit the capabilities of the target workstation
for JOPES implementation, the GIPSYmate system had to be modernized using Ada
as the high order language (HOL) and implementing the Graphical Kernel System
(GKS) on the Zenith Z-248 PC/AT.

1.1.3 Terra Plot (TPLOT). TPLOT is a generalized plotting capability for
displaying geodetic information on TPLOT-generated maps, pre-printed maps, or
other geodetic frames of reference. It is used within the command and control
environment to graphically depict unit identification and location, missile

1-2

trajectory and bomber sortie routing, reconnaissance flight paths, range
plotting, and alternative force posture analysis.

TPLOT is a critical part of the support provided by the JDSSC to the elements
of the OSD and the Joint Staff in their strategic planning, targeting, and
analysis functions. Other DOD activities using TPLOT for similar graphics
applications include the North America Air Defense Command (NORAD), Commander
in Chief, Pacific (CINCPAC), Defense Intelligence Agency (DIA), Central
Intelligence Agency (CIA), the Defense Communications Engineering Center
(DCEC), the Air Force Space Data Services Center, and the Tactical Fighter
Weapons Center. While the TPLOT software has been distributed to these DOD
sites, no software support is provided by the JDSSC. TPLOT is maintained
within JDSSC on the HIS 6080 and IBM 3090 platforms. Plot tapes are produced
for the CalComp 5845 electrostatic plotter.

1.1.4 Joint Staff Mapping System (JSMS). JSMS emerged from a Joint Staff
requirement to produce accurate graphic representations of events in key parts
in the world for aiding decision makers at the National Military Command
Center (NMCC).

The Joint Staff has acquired the DeLorme Mapping System (DMS) which provides
the capability to retrieve vector and raster map data depicting information
from various databases. DMS provides the capability to retrieve user data,
overlay this data on DMS maps, and output this data on a printer or plotter.
DMS may operate in both Tempest and non-Tempest environments. DMS is hosted
on graphic workstations and provides vector and raster map data as specified
by the Joint Staff. A requirement exists for DMS to be integrated into other
Joint Staff systems. As a result, the JDSSC is charged to provide the
following:

a. Operational and technical support for the JSMS

b. System integration

c. Develop/procure software programs and device drivers; identification
and recommendation of Commercial Off-The-Shelf (COTS) software
packages; recommendations for associated standards

d. Hardware configuration requirements and selections

e. COTS graphics packages that meet the needs of the Joint Staff

f. A database management system (DBMS) using Structured Query Language
(SQL)

g. Independent Validation and Verification (IV&V) for software and
hardware

h. Long-range technical guidance for the JSMS.

S 1-3

The hardware environment for the JSMS is Wang 280T PC and Zenith Z-248 PC/AT
microcomputers operating under DOS. The operating environment may be expanded
to include other microcomputer systems and other operating systems such as

Unix. The mainframe computer system environments for this project include the
Honeywell 6080, IBM 3090/180E, VAX 8650, and VAX 11/785.

1.1.5 Mapping and Graphic Information Capability (MAGIC). The MAGIC effort
has evolved from and will build upon the modernization of the WWMCCS standard
host-based Graphic Information Presentation System (GIPSY) and the Z-248 PC-

based modernized GIPSYmate system.

Designed and developed to meet the needs of a new generation of WWMCCS users,
MAGIC will be fielded as a resident system on the WWMCCS Workstatic7 ('WWS) and
will present a menu-based graphical user interface (GUI) to the user that

integrates (as transparently as feasible) the Commercial Off-the-Shelf (COTS)
packages also resident on that platform. Processing facilities appropriate to
both sophisticated and novice users will be supported as well as the ability
to access the full range of database types found on the WWMCCS host (H6000).
Functionally, the MAGIC user will have the capability to perform data

retrieval and manipulation operations, business graphics displays, geographic
and geodetic mapping displays, slide show generation, and graphic editing
operations. In terms of system configuration, MAGIC is comprised of eight
CSCIs. Each CSCI has been defined according to the functionality it performs
and the services provided to both the user and each other. The following is a
brief description:

a. Human Interface - This CSCI functions as the logical hub of all MAGIC

processing activities. When a user initiates a MAGIC session, the
program menus are presented to the user, and control of program
actions begins in the Human Interface CSCI. The Human Interface CSCI
also provides context-sensitive help by displaying help dialogue
screens at the touch of a key. The three major components that make
up this CSCI are global system control, high level system menus, and

a help facility.

b. Data Management - This CSCI enables the user to access data from user

databases located on the WWMCCS host or the WWMCCS Workstation (WWS).

Data in the databases is selected by a user or an application CSCI
according to a qualification criterion; the resulting data subset can

then be manipulated using Data Management's capabilities and

presented as user-formatted reports, statistical graphs, and

geographic displays.

c. Business Graphics - This CSCI enables the MAGIC user to create and

display reports. Each report consists of data selected from a

previously identified MAGIC internal format subset of a database.
This CSCI gives the user the flexibility to display a report in a

form most suited to the user's needs, varying from simple, formatted

reports to line graphs and pie charts.

1-4

d. Geographic Mapping - This CSCI provides a powerful imagery tool for
recording, calculating, displaying, analyzing, and general
understanding of spatial interrelationships of user data. It is
designed to have a stand-alone core that performs cartographic
functions by interfacing to the DeLorme Mapping System (DMS). The
remaining capabilities of this CSCI are designed as shells around
overlays of user-identified data with a variety of graphical display
options and interactive editing capabilities.

e. Graphic Editor - This CSCI provides the user the interactive
capability to create or enhance slides. Slides modifiable by the
Graphic Editor can be created by MAGIC system. The Graphic Editor
also provides the user with slide output functions. Slide creation
or modification can be accomplished by editing functions like draw,
text, manipulate object, modify object attributes and manage slide
for saving, loading, activating, overlaying, and clearing slides.

f. Slide Show - This CSCI provides the user with the capability to
organize and display previously saved screen images (slides) which
are located in an inventory. The user has the capability Lo organize
these slides and create briefings (an ordered group of slides), as
well as adding, removing, rearranging, and renaming slides in the
inventory. The user may display slides and briefings at the
terminal, printer, or plotter.

g. Internal Processing - This CSCI provides a multitude of capabilities
that have at least one of two properties: it is required by more
than one CSCI, or it is hardware dependent. The capabilities
identified by these criteria are as follows:

(1) Allocation, initialization, and updating of the session record
file

(2) File input/output (I/0) functions such as open, close, read, and
write operations

(3) MAGIC environment initialization and cleanup

(4) Menu/Window Interface Support that handles interaction between
applications CSCIs and the user.

h. Programmer Utilities - The specific role of this CSCI is to support
the MAGIC software by providing necessary development and maintenance
tools. These tools provide the means for generating new releases of
the MAGIC software and system files. Programmer Utilities does not
interface with the other CSCIs in the executable system.

S 1-5

1.2 Purpose

The Secretary of Defense has directed that the Director, Defense
Communications Agency (DCA), utilizing the Joint Data Systems Support Center
(JDSSC), provide automated data processing (ADP) and related general support
to the National Military Command System (NMCS).

The JDSSC is charged with the development, installation, and operation of an
ADP support capability at the command centers of the NMCS. The JDSSC has the
responsibility to provide analysis, modeling, design, development,
enhancement, and documentation of new and existing capabilities; computer
programming support, development and maintenance of data files; on-going and
ad hoc operational support; computer support, and other related support to the
Joint Staff and the Office of the Secretary of Defense (OSD).

The JNGG Graphics Program is required to provide general-purpose graphics
display and associated query and retrieval software support. This entails the
analysis, design, development, enhancement, and documentation of new and
existing capabilities in the areas of interactive computer graphics,
batch-based computer graphics, human engineering, system e1iineering,
interactive query and display systems, batch-based query and report
preparation system, integration data/graphic systems, and language translators
supporting services implied by this list. The objectives of the efforts in
the work area are to:

a. Improve customer service

b. Reduce fielded failures and improve productivity

c. Reduce error rates and improve software quality

d. Reduce time cycles by speeding up the software development process

e. Reduce the cost of poor quality

f. Provide for more efficient use of application resources through the
use of standards and promote software reusability

g. Provide a useful, general-purpose development environment with tools
for specification, design, implementation, testing, and documentation

h. Explore and apply the state-of-the-art graphics and information
systems to command and control functions.

As noted in paragraph 1.1, the JNGG Graphics Program is currently comprised of
the following projects: Graphics Information Presenta'ion System (GIPSY),
Terra Plot (TPLOT) System, GIPSYmate, Mapping and Graphic Information
Capability (MAGIC), and Joint Staff Mapping System (JSMS).

1-6

*l 1.3 Introduction

This SSPM contai.q the standards, procedures, guidelines, and restrictions to
be used in the software development associated with all projects comprising
the JNGG Graphics Program. Th2 standards and procedures specified in this
document will be used to ensure uniformity rmong the CSCIs or subsystems in
all projects as they progress through the JDSSC Release Process described in

paragraph 3.1.

S

S 1-7

THIS PAGE INTENTIONALLY LEFT BLANK

1-8

SECTION 2. REFERENCED DOCUMENTS

This section contains a listing of all documents used in the preparation of

this manual. A detailed bibliography appears as paragraph 4.1. Technical
society and technical association specifications and standards are generally

available for reference from libraries. They are also distributed among
technical groups and using Federal Agencies.

2.1 Government Documents

This paragraph contains a listing of all Government references (standards,
manuals, specifications, and ancillary technical documentation) used in the
development of this SSPM.

DI-A-3029 Agenda - Design Reviews, Configuration Audits and
Demonstrations

DI-E-3118 Minutes of Formal Reviews, Inspections and Audits

DI-MCCR-80011 Software Standards and Procedures Manual Data Item

Description

DOD-STD-2167A Defense System Software Development

DOD-STD-2168 Defense System Software Quality Program

DOD-STD-7935A DOD Automated Information Systems (AIS) Documentation

Standards

FIPS PUB 151 Portable Operating System Interface for Computer

Environments (POSIX)

JDSSC PM 1-90 Documentation Standards and Publication Style Manual

JDSSC PM 2-90 Standards and Procedures for Software Projects

JDSSC PM 4-90 Software Metrics Program

JDSSC TM 402-90 FORTRAN Programming Standards

MIL-HDBK-287 A Tailoring Guide for DOD-STD-2167A, A Defense System

Software Development

MIL-STD-480B Configuration Control - Engineering Changes,
Deviations and Waivers

MIL-STD-481B Configuration Control - Engineering Changes (Short

Form), Deviations and Waivers

2-1

MIL-STD-482A Configuration Status Accounting Data Elements and

Related Features

MIL-STD-483A Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs

MIL-STD-1521B Technical Reviews and Audits for Systems, Equipments,
and Computer Software

MIT/LCS/TR-368 The X Window System

SEL-87-002 Ada Style Guide

SEL-87-004 Assessing the Ada Design Process and its Implicaticns:

A Case Study

2.2 Non-Government Documents

This paragraph contains a listing of all non-Government references (standards,

manuals, specifications, and ancillary technical documentation) used in the
development of this SSPM.

ANSI X3.124-1985 Graphical Kernel System (CKS) Functional

Description

ANSI X3.159-1989 Programming Language C

ANSI/IEEE Std 990-1987 IEEE Recommended Practice for Ada As a Program
Design Language

ANSI/MIL-STD-1815A Reference Manual for the Ada Programming Language

2.3 Other References

This paragraph contains a listing of all outside, non-Government references

(books, periodicals, etc.) used in the development of this SSPM.

Booch, Grady Software Engineering with Ada, Second Edition

Bruce, Phillip and The Software Development Project: Planning and

Pederson, Samuel M. Management

Charette, Robert N. Software Engineering Environments: Concepts and

Technology

Martin, James Recommended Diagramming Standards for Analysts &
Programmers: A Basis for Automation

Plauger P.J. and Standard C

Brodie, Jim

2-2

Plum, Thomas C Programming Guidelines

Plum, Thomas Reliable Data Structures in C

Pressman, Roger S. Software Engineering: A Practitioner's Approach,

Second Edition

* 2-3

THIS PAGE INTENTIONALLY LEFT BLANK

2-4

. SECTION 3. SOFTWARE STANDARDS AND PROCEDURES

The following paragraphs define and describe the specific standards and

procedures to be used in JNGG's Graphics Program software development.

3.1 Software Development Tools, Techniques, Methodologies

The following subparagraphs identify and describe the specific tools,
techniques, and methodologies that will be used in support of the JNGG

Graphics Program.

3.1.1 The JDSSC Software Release Process. The JDSSC is implementing a
standard release process across all of its software projects. This initiative

is the cornerstone of the Center's Software Engineering Improvement Program.

The standard release process, along with other elements of the improvement

program, are intended to significantly upgrade JDSSC's capabilities to deliver

quality software products. This subparagraph presents the functional makeup

of the software release concept and identifies the general criteria by which

Project Officers structure their software development programs. It addresses:

a. The definition of a release

b. Release planning

c. The activities of a release

* d. User participation.

3.1.1.1 Release Definition. All projects within JNGG shall develop software
on the basis of a "release." A release is defined as a planned software

delivery to implement specific user-approved and documented capabilities. The
release requirement pertains to new software development and to software

maintenance of existing systems. Project Officers and their primary user
(i.e., customer) coordinate the schedule for software releases.

The timing of software releases is normally based on the capabilities to be
delivered and the time/resources required to adequately develop and test each

capability. Project Officers shall not schedule software releases based on

programmatic conditions alone. Quality product. can only be produced when

time and resources are allocated to proper development, testing, and quality

assessment. Conflicts arising between user-directed scitules and Project

Officer estimates for adequate development time shall be resolved by the

Program Manager if possible. If the conflict still cannot be resolved, first

the Branch Chief and, ultimately, the Division Chief will intervene. The

resolution of such conflicts must be documented by the Project Officer and

coordinated by the intervening manager and user organization. JDSSC does not

want to release software that has not been properly produced.

Projects within JNGG shall address release planning and schedule criteria in

their SDPs.

3-1

3.1.1.2 Release Plan (RP). Each JNGG software release shall be preceded by a
.elease Plan (RP). The RP is the what, when, and how of every release. It is
the schedule ana capability agreement between the Project Officer nd the
primary user. The RP is a user-oriented document, but must be presented at a
level of detail necessary to ensure credibility of the plan. It does not have
to be elaborate, but it must define precisely the responsibilities and methods
for ensuring that the work will be performed successfully. RPs are living
documents and will be kept up to date until the release is fielded. JDSSC PM
1-90 outlines the format and content for an RP.

3.1.1.2.1 Content. The minimum elements in a Release Plan are:

a. A summary of the release that can be understood by the customer

b. A list of capabilities (i.e., the Release Capability List (RCL))
whose status can at any time be reported to the customer and JDSSC
management

c. A Work Breakdown Structure (WBS) detailed enough to provide product
identification at the lowest level required for quality assurance
reviews and configuration management

d. A list of discrete milestones that can be tied to products or product
activities on the WBS

e. A risk assessment detailing management and technical issues that
might impact the capabilities, cost, or schedule for the release

f. A list of key project personnel and their assignments in relation to
the WBS.

3.1.1.2.2 Release Success Criteria. Project Officers shall develop and
document success criteria for their releases. Success of a release should be
based on meeting schedule, cost, and capability projections. The Rel:ase Plan
must contain the information needed to evaluate success. For example, RCLs
could be used to compare capabilities promised to capabilities delivered.

3.1.1.2.3 Product-Oriented Release. A successful project scheduling and
tracking capability is based on the concept of a product-oriented process. A
product-oriented release process defines each milestone as a delivered product
and not as a point in time. A well-defined set of software products (program,
documents, and data) is developed as a result of each activity in the process.
The products are reviewed and approved before beginning the next activity.

Progress is monitored through the delivery and review of interim or
preliminary products. This may include submission of document outlines,
abstracts of documents, position papers, and descriptio of key algorithms or
concepts. Multiple drafts of documents may be required for adequate review.
A single release can be in multiple activities concurrently since different
components can be in different activities. A single component can be in one

3-2

and only one activity at a given time. Only when all products have been

completed is the release complete. The concept of percent completion is not
application to a product-oriented process.

The basic concepts of software engineering assume a product-oriented process.
Software development functions such as checkpoints, quality assur-nce, and
configuration management have no meaning without identifiable procucts.
Software development projects have identified products called Configuration
Control Items (CCIs) with the software development process structured around

CCIs. Work breakdown structures, configuration management plans, quality
assurance tasks, and project status milestones are all focused against CCIs.
In short, without a product-oriented process, there is no process.

The JDSSC Standard Release Process is a product-oriented process. This means
that the implementation and management of a JDSSC release are in the
development and reviews of its identified products.

3.1.1.3 Release Activities and Funrtions. The JDSSC release concept is based
on the principle that a well-managed and cost-effective software development

program must have a structure for determining at any given point in time what
is being developed, when it is to be delivered, and how the development is

progressing. In order to have this structure, the JDSSC policy on a software

release requires that: (1) a specific set of requirements be identified, (2)
the syecific set of requirements be documented in terms of ADP products and
activities, (3) the ADP activities be implemented in accordance with a
published and up-to-date schedule, (4) the resulting products be verified
against the original requirement, and (5) the software be delivered to the

user community for operational verification.

This subparagraph addresses the release process flow, the role of
documentation, the role of revie- , and the role of configuration management.

3.1.1.3.1 Release Process Flow. All JNGG releases will go through seven
general activities:

a. Definition

b. Specification

c. Detailed Design

d. Implementation

e. Acceptance Test

f. Release

g. Review.

3-3

At specific points within the release activities, "contracts" are developed
between users, the Project Officer, and the technical development staff. This
introduction of the term "contracts" is to ensure the staff understanding of
the concepts of partnerships and represents a commitment by all parties

involved in the process.

The following focus areas are provided to assist Project Officers in
developing SDPs and transitioning to the standard process:

a. Projects have a primary user, or user community representative, who

participates in release planning.

b. Software requirements for additional capabilities (i.e., new

capabilities or updates to old ones) are submitted through the
customer, formally documented, and controlled. This also applies to
capability improvements suggested by the technical development staff.

c. Software discrepancies (e.g., SPCRs) are documented, controlled, and
processed like a software upgrade request. This applies to
discrepancies discovered by the user community or the technical
development staff.

d. All change requests go through a formal cost and impact analysis in
order to estimate the resources needed to implement.

e. Capabilities have a documentation trail from initial tasking through
operational fielding. Requirements that are too general should be
decomposed into basic capabilities.

f. Milestones are associated with discrete products and must be
identified so that there can be no doubt as to whether they were
achieved.

g. Projects have a configuration management mechanism and a product
review process to ensure a structured approach to software

activities.

3.1.1.3.2 Role of Documentation. Through many of the software development
activities, documentation is the only measurable product subject to review and
technical quality assessment. This means that without documentation, there is
no practical way a Project Officer can assess the a-tual schedule and cost

status of a project.

Documentation requirements and the standards for documentation are detailed in
the JDSSC Documentation Standards and Publication Style Manual (PM 1-90).
This procedures manual identifies documentation products associated with the
release process and provides guidelines on how to apply the DOD Standards
noted in subparagraph 3.1.2 (i.e., DOD-STD-7935A). The requirements for
documentation should be established at the beginning of a release. Project
documentation must be considered a formal CCI. JDSSC PM 1-90 outlines the

3-4

activities of a release during which documentation is produced, updated, and
finalized.

Project Officers need to use documentation as a success criterion for each
release. Clearly, staff members should be rewarded for the production of
quality written work (i.e., complete and technically correct). All staff
members, both in-house and contractors, must understand that quality
documentation, like quality software development, is expected as a normal part
of job performance and job performance evaluations.

Having a procedures manual will not produce project documentation. Document
needs get satisfied only when Project Officers and their entire technical
staff understand the relationship between complete documentation and software
development project success. Project Officers should address individual
project documentation needs in their SDPs. Older projects (e.g., GIPSY and
TPLOT) which do not have the documentation baseline recommended by JDSSC PM
1-90 should address documentation re-engineering in their SDPs.

3.1.1.3.3 Role of Reviews. All JNGG software development projects shall have
a formal review process. This process shall be documented in the project's
SDP. Reviews of products and schedules are crucial to management visibility
and successful software implementation. Reviews are used in support of
project's software quality assurance objectives. The better the quality of
the reviews, the better the quality of the products.

There are two broad types of reviews which must be addressed for each project:
(1) product quality assessment and (2) process quality assessment reviews.
Project Officer guidelines for the two types of reviews are presented in the
following subparagraphs.

3.1.1.3.3.1 Product Quality Assessment. As the JDSSC focus on software
reliability increases, emphasis is being placed more and more strongly on a
separate organizational element, detached from the development group, to be
responsible for quality and reliability-related concerns. This is especially
true for large projects. This organization entity is normally called the
software quality assurance (SQA) group. The organizational independence of
SQA ensures that the checks and balances necessary for a successful ADP
program are inherent in the management structure. Since the ultimate
responsibility for the delivered products rests with the technical development
staff, the independent SQA provides a separate reporting channel to project
management for monitoring development progress.

The SQA element should provide recommendations on whether to accept or reject
milestone products. Additionally, the SQA should conduct in-progress audits
and reviews. In the event of conflicts between SQA and the technical
development staff, resolution should be accomplished at the appropriate
management level (e.g., Program Manager).

The broad purpose of SQA is to assure that computer software design, code,
associated documentation, and performance comply with stated requirements.

3-5

Through quality assessment reviews, errors and omissions can be uncovered
early and corrected before their effect cascades through the entire system.
Some top priority focus areas for consideration as SQA responsibilities are:

a. Maintains oversight of requirements, specifications, design, software
documentation, and test procedures to ensure requirements
traceability

b. Reviews software design prior to coding

c. Participates in technical review, evaluates for technical compliance,
and audits development activities

d. Ensures adherence to software standards and procedures

e. Monitors testing and test results to ensure that success criteria are
satisfied.

3.1.1.3.3.2 Process Quality Assessment. A good JNGG development process will
not just happen. First, it must be carefully planned; second, it must be
continually monitored to ensure effective implementation and continuous
operation. Monitoring is an audit-related function designed to assess both
the process and the compliance with the process. The monitoring process must
have objectives and must collect information to monitor (i.e., metrics).
Guidelines for monitoring objectives and metrics collection are provided in
the following subparagraphs.

3.1.1.3.3.2.1 Objectives. Evaluating and improving the process defined by a
project's SDP is the single objective of the monitoring function. Following
are some top-priority focus-area questions for Project Officers to consider in
their process review program:

a. Are errors being detected early in the development cycle?

b. Are the required technical reviews being conducted?

c. Are cost, time, and capability estimates proving to be accurate? If
not, where are the problem areas?

d. Can Project Officers and staff members give accurate status reports
quickly?

e. Is there a consistent understanding of the SDP across the entire
staff?

f. Are feedback reports available? Is the staff participating in the
process improvement program? Are users participating?

g. Are quality objectives defined for the project and are they being
met?

3-6

3.1.1.3.3.2.2 Metrics. Project metrics must be collected and used as an
evaluation instrument for monitoring the software development process. The
JDSSC has initiated a metrics collection program through the JDSSC Software
Metrics Program (PM 4-90). The advantage of using metrics is that Project
Officers and their managers are provided a specific number which can be used
to compare trends within a single project over a period of time. Project
Officers shall address the collection and use of metrics in their SDPs.

3.1.1.3.4 Role of Configuration Management. All JNGG software development
projects shall have a formal Configuration Management (CM) Plan. This plan
shall be documented in one of two ways: (I) incorporated as Section 7 of the
project's SDP, or (2) a stand-alone Software Configuration Management Plan
(SCMP) developed in accordance with DID # DI-MCCR-80009. The role of CM is
one of maintaining software stability and controlling change throughout the
life cycle of the project. This subparagraph provides guidelines and
requirements for a project's CM Plan.

3.1.1.3.4.1 Baseline Concept. Successful achievement of CM implies that a
project is able at any time to provide the definite version of the software
products (e.g., software code, developmental configuration) or any of the
intermediate products that define the software (e.g., requirements and
specifications). These controlled product items are called baselines. This
concept of baseline is fundamental to an effective CM program.

The JDSSC Standard Release Process uses baselining in its software development
approach. Baselining of products will provide projects with the following

* positive attributes:

a. No changes are made after a product is baselined without agreement of
all interested parties.

b. The higher threshold for change tends to stabilize products and
projects.

c. The controller of the configuration management process (e.g., the
project librarian) has, at any time, a definite version of the
product.

3.1.1.3.4.2 CM Activities. JNGG project CM plans must contain the activities
to identify, baseline, control, and report changes to project products. In
addition, the reader of the project's CM plan should be able to identify and
understand how the activity is performed. A general explanation of these
activities follow:

a. Configuration Identification - the process of defining, collecting,
and identifying all products to be controlled; concerned with control
of the item, not its technical adequacy or its quality.

b. Configuration Baselining - the process of officially recognizing a
particular configuration with all its associated products (e.g.,

3-7

technical documentation); establishes the exact configuration as a
control point which then becomes the reference against which all
subsequent changes must be formally accounted.

c. Change Control - the process of evaluating, coordinating, and
approving (or disapproving) the implementation of changes to an item
under baseline control; assures and expedites the implementation of
needed changes and prevents unauthorized and unnecessary ones.

d. Configuration Accounting - the activity keeping track of the current
configuration status through a Software Development Library (SDL);
provides the information to trace the evolution of the current
revision from the initial released configuration.

3.1.2 Applicable Development Standards. Although the overall governing
process for JDSSC software is guided by the JDSSC Software Release Process
described in subparagraph 3.1.1 above, specific implementation of the types of
documentation, the amount of documentation, and types and frequency of reviews
is a matter of preference on the part of the Project Officer in consultation
with the Program Manager.

Currently, there are two software development standards that may be utilized
for implementing those items listed above: DOD-STD-2167A and DOD-STD-7935A.
Tailoring guidelines for DOD-STD-2167A are also available through
MIL-HDBK-287.

A number of corollary standards are available to provide additional guidance
on matters related to configuration management (e.g., MIL-STD-480B,
MIL-STD-481B, MIL-STD-482A, MIL-STD-483A), software quality assurance (e.g.,
DOD-STD-2168), and formal review criteria (e.g., MIL-STD-1521B).

3.2 Critical Low-Level CSC and CSU Selection Criteria

Of the three major approaches available for the coding process (top-down,
bottom-up, and RAD), only the top-down approach can be expected to require
that a number of low-level Computer Software Components (CSCs) and Computer
Software Units (CSUs) be deemed "critical" to the overall development and,
thus, be needed prior to the point they would normally be available. In other
words, some bottom-up coding would be expected in special cases where the
absence of these "critical" low-level CSCs or CSUs would have a detrimental
effect on the rest of the project.

In order to be classified as a critical low-level CSC or CSU, specific
criteria must be met to ensure that only valid program units are so
designated:

a. The program unit must be requested to be so designated by a member of
the Configuration Control Board (CCB).

3-8

b. The program unit must be designated "critical" by the CCB and appear
in the CCB Minutes.

c. At least one of the following technical criteria must be satisfied:

(1) The program unit impacts more than one CSCI.

(2) The program unit interfaces with multiple units within a single
CSCI and whose delay would cause serious disruption in the
CSCI's development schedule.

(3) The program unit interfaces with external systems.

(4) The program unit provides low-level services such as file
input/output (I/O), device drivers, and metafile conversions.

(5) The program unit is to be structured as reusable code (e.g., Ada
generic or C macro function).

(6) The language to be used is Assembler.

(7) The program unit uses any Ada constructs or capabilities defined
in Chapter 13 of ANSI/MIL-STD-1815A.

(8) The program unit employs bit-field operations in the C
Programming Language.

5 3.3 Software Development Library

The software development library (SDL) is a controlled collection of software,
documents, and associated tools and procedures to facilitate the orderly
development and subsequent support of the software. Within the SDL are kept
the completed Software Development Files (SDFs) for each level of development
(i.e., CSCI and CSC SDFs). Additional information on how the SDL will support
this effort can be found in the appropriate sections of the Software
Development Plans (SDPs) for the projects comprising the JNGG Graphics
Program.

The SDL for all projects will be implemented in accordance with the SDP
guidance pertinent to each project.

3.4 Software Development Files

The Software Development File (SDF) is a record of specific software
development activities associated with a program unit. It is established in
skeletal form at the start of the program and becomes an important management
tool for monitoring progress during software development and testing
activities. The SDF also serves as the vehicle by which the software design
may be incrementally reviewed by the customer throughout the software
development process.

p 3-9

The SDF is the central place for maintaining all the necessary information
about a particular unit and will be heavily relied on when generating the
"as-built" system documentation included in the final design documents. The
SDF will also be used to accomplish the following:

a. Ensure consistent documentetion of the program unit testing process.

b. Track any modifications to the original design of the program unit.

c. Document design and coding decisions that might affect the final
system capabilities or performance.

d. Reduce time required for program unit familiarization during system
maintenance.

e. Provide a vehicle for monitoring project progress on a program-unit
basis.

3.4.1 Creation and Maintenance Responsibility. The contractor shall ensure
that the development of each CSC and CSCI (or module and subsystem, as
appropriate) will be documented in Software Development Files (SDFs). The
responsible Project Manager shall ensure that a separate SDF is established
and maintained for each CSC or a logically-related group of CSCs, and each
CSCI (or modules and subsystems, as appropriate). The SDF will be subject to
Configuration Management (CM) and Software Quality Assurance (SQA) control
programs as described in the appropriate project's SDP, SCMP (if applicable)
and Software Quality Program Plan (SQPP).

Each SDF will be maintained in a loose-leaf binder with tabbed sections using
the format and content guidelines discussed in subparagraph 3.4.2. All SDFs
will be maintained for the duration of the project's life cycle.

3.4.2 Format and Contents. The following subparagraphs present the format
and describe the contents (which must be included directly or by reference) of
the SDFs. To reduce duplication, SDFs should not contain information provided
in other documents or SDFs. For the purposes of this discussion, "unit"
refers to CSC, CSCI, Module, or Subsystem. An example table of contents
appears as figure 3-1.

3.4.2.1 Unit Status. This section is numbered as Section 1 and includes the
identification of the unit, the project schedule related to the unit, and an
activity log of all important project activities that involve the unit. The
unit is first identified within the related computer program and module. Any
project schedules and procedure networks that relate to this unit are then
included and are kept current with scheduled and actual dates. The activity
log is an event-oriented log listing the pertinent activities that describe
the status of the unit within the development and testing phases. The
activity log should describe the activities which relate to the unit, so that
an exact status can always be ascertained.

3-10

S

CONTENTS

SECTION 1. UNIT STATUS
1.1 Identification
1.2 Project Schedule

1.3 Activity Log

SECTION 2. REQUIREMENTS SPECIFICATION

SECTION 3. DETAILED DESIGN
3.1 Position
3.2 Interfaces
3.3 Processing
3.4 Limitations

SECTION 4. OPERATING INSTRUCTIONS

SECTION 5. CODE

SECTION 6. UNIT TEST PLAN AND PROCEDURES

* SECTION 7. TEST RESULTS

SECTION 8. DEFICIENCY REPORT CHANGES

SECTION 9. AUDITS AND REVIEWS

SECTION 10. NOTES

Figure 3-1. Sample SDF Table of Contents

S 3-11

3.4.2.2 Requirements Specification. This section is numbered as Section 2
and contains a copy (or provides a reference to) the portions of the Software
Requirements Specification pertinent to the unit. Any other documentation
related to the unit and not included in the Software Design Document (SDD)
should be included in this section.

3.4.2.3 Detailed Design. This section is numbered as Section 3 and contains
a copy of the portions of the detailed design documentation related to the
unit. This documentation is updated to reflect the final design and
implementation of the unit. This section of the SDFs will be relied upon
heavily when producing the "as-built" computer program documentation.

The information in this section should include the following:

a. Position. Position of unit within the system hierarchy, including
the call sequence and the required parameters

b. Interfaces. Data flow in and out of the unit and interfaces with

other software units and the external environment (hardware

interfaces)

c. Processing. Description of the processing performed by the unit
(control flow)

d. Limitations. Special conditions or limitations.

3.4.2.4 Operating Instructions. This section is numbered as Section 4 and
contains information reflecting the actual user interface with the software
subsystem. The wording of user prompts and error messages, as well as the

description of the circumstances under which the messages are output, should
appear here and be ujuated as needed.

3.4.2.5 Code. This section is numbered as Section 5 and contains a listing

of the developed code along with any computer-generated cross-reference
listings or maps. An explanation of the procedure required to run the code,

including code and file identifiers, should also be included, along with the

information and/or files required to submit the unit to configuration control

for testing.

3.4.2.6 Unit Test Plan and Procedures. This section is numbered as Section 6
and contains the test plans and procedures for unit testing that were written

by the programmers responsible for the unit. These test plans and procedures
are informal, but will serve as the basis for accepting the unit for
configuration control and higher levels of testing. The test plan and

procedures should test the unit exhaustively and specify the acceptance

criteria.

3.4.2.7 Test Results. This section is numbered as Section 7 and contains all

results of the unit testing accomplished. Included in the test results should

be the test configuration used, the date, and the version of the tested unit.

3-12

If the unit failed, this should also be recorded, and the tests should be
rerun after the unit is corrected.

3.4.2.8 Deficiency Report Changes. This section is numbered Section 8 and
contains a log of the Software Release Incident Reports (Irs) and/or Software
Problem/Change Reports (SPCRs) generated against the unit as well as an
L-<planation of the resolution of each.

3.4.2.9 Audits and Reviews. This section is numbered Section 9 and contains
a copy of all review and audit reports applicable to the SDF. Whenever a
review of the SDF is performed, the review comments and the associated
checklist for verification that corrections have been completed are placed in
this section. Comments pertaining to the unit generated in design reviews
should also be included.

3.4.2.10 Notes. This section is numbered Section 10 and contains the
following items:

a. All memoranda and design notes related to the unit

b. A version description log containing an explanation of the
capabilities of each version of the unit as well as the IRs and/or
SPCRs closed by the versions

c. Any additional notes the programmer wishes to include to use at a
later date or to help the maintenance programmer to better understand

* the unit.

3.4.3 Maintenance Procedures. The contractor shall ensure that the SDFs are
maintained on a regular basis. It is the Project Manager's responsibility to
see that individual SDF notebooks are reviewed on a weekly basis for
completeness and updated whenever necessnrv. A- . ,nir- - ch SDF will be
updated following each In-Process Review (IPR), design team meeting, or
informal meeting with the Government whenever discussions pertaining to that
particular SDF are presented.

3.5 Documentation Formats for Informal Tests

During the JDSSC Release Process, informal test procedures and test results
will be generated and documented for the Government. This paragraph will
detail the documentation format to be utilized as a guide for content. The
documentation standards contained in subparagraph 3.6.5 will be utilized as
well.

For the sake of simplicity, the contractor shall use the same documentation
format for all informal testing deliverables (except the STP generated during
a preliminary design phase). Inapplicable sections to a specific deliverable
will simply be noted as such. The three applicable deliverables are:

P 3-13

a. The informal CSC integration testing document generated in the
detailed design phase

b The detailed informal test procedures generated in the coding and
unit testing phase

c. The informal integration test results generated in the CSC
integration and testing phase.

As noted previously, the STP produced during the preliminary design phase will
not follow the informal documentation format delineated in this section.
Rather, the STP will adhere to DID # DI-MCCR-80014A for content guidelines. A
sample table of contents appears as figure 3-2.

3.5.1 Scope of Testing. Numbered as Section 1, this section summarizes
specific functional, performance, and internal design characteristics that are
to be tested. The testing effort is bounded, criteria for completion of each
test phase are described, and schedule constraints are documented.

3.5.2 Test Plan. This section appears as Section ? and describes the overall
strategy for integration. Testing is divided into phases and subphases that
address specific functional and information domain characteristics of the
software. Each of the phases and subphases should delineate a broad
functional category within the software and can generally be related to a
specific domain of the program structure.

The following criteria and corresponding tests are applied for all test
phases:

a. Interface integrity. Internal and external interfaces are tested as
each module (or cluster) is incorporated into the structure.

b. Functional validity. Tests designed to uncover functional errors are
conducted.

c. Information content. Tests design to uncover errors associated with
local or global data structures are conducted.

d. Performance. Test designed to verify performance bounds established
during software design are conducted.

These criteria and the tests associated with them must appear and be discussed
in this section.

Also discussed in this section is a schedule foi integration, overhead
software, and related topics. Start and end dates for each phase are
established and "availability windows" for unit-tested modules are defined. A
brief description of overhead software (stubs and drivers) concentrates on
characteristics that might require special effort. Finally, test environment
and resources are described. Unusual hardware configurations, exotic

3-14

I

CONTENTS

SECTION 1. SCOPE OF TESTING

SECTION 2. TEST PLAN

2.1 Test Phases
2.2 Schedule

2.3 Overhead Software

2.4 Environment and Resources

SECTION 3. TEST PROCEDURE
3.1 Description of Test Phase <x>
3.1.1 Order of Integration
3.1.2 Purpose and Modules To Be Tested
3.1.3 Special Tools or Techniques

3.1.4 Overhead Software Description
3.1.5 Test Case Data
3.2 Expected Results for Test Phase <x>
3.3 Description of Test Phase <y>
3.3.1

3.3.2

3.3.3

SECTION 4. ACTUAL TEST RESULTS

SECTION 5. REFERENCES

SECTION 6. APPENDIXES

Figure 3-2. Sample Informal Test Documentation Table of Contents

13-15

simulators, and special test tools or techniques are a few of the many topics
that may be discussed here.

3.5.3 Test Procedure. In this section (Section 3), detailed testing
procedures are described which are needed to accomplish the test plans
described in subparagraph 3.5.2. The order of integration and corresponding
tests for each integration phase are described. A listing of all test cases
and expected results is also included.

3.5.4 Actual Test Results. In Section 4 of this document, a history of
actual test results, problems, or peculiarities is recorded. Information
contained in this section can be vital during formal CSC testing.

3.6 Design and Coding Standards

The following subparagraphs present the specific standards to be used for
design and coding during the JNGG Graphics Program software development.
Specifically defined are: Ada style specifications, C style specifications,
FORTRAN programming standaras, programming languages and graphics standards,
diagramming symbology and standards, and documentation standards.

3.6.1 Ada Style Specifications. The following subparagraphs present the
structuire, coding, and format guidelines to be utilized in Ada development for
all projects comprising the JNGG Graphics Program. These style specifications
are written specifically to provide:

a. A clear definition of the structure, coding style, and formats to be
used in Ada programmatic structures

b. A specification of the commenting and prologue standards to be used
in all Ada source code -- including Program Design Language (PDL)

c. A statement of responsibility as to which individual, if any,
possesses authority to grant specific waivers and/or deviations to
these guidelines.

3.6.1.1 Structure Guidelines. The following subparagraphs present and
discuss general guidelines to be used in the structure utilized for Ada
subprograms. These guidelines are grouped into the following topics:
subprogram cohesion; packages; visibility; tasks; program structure and
compilation issues; exception propagat-on; generic units; and encapsulation.

3.6.1.1.1 Subprogram Cohesion. A subprogram should perform a single,
conceptual action. In other words, it must be "f'inctionally cohesive."

3.6.1.1.2 Packages. Packages allow the specification of groups of logically
related entities. In their simplest form, packages specify pools of common
object and type declarations. More generally, packages can be used to spe,-ify
groups of related entities including subprograms that can be called from

3-16

outside the package, while their inner workings remain concealed and protected
from outside users.

3.6.1.1.2.1 Utilization. In order for a package to be truly useful, it must
perform one or more of the following purposes which are listed below in order
of decreasing desirability:

a. Model an abstract entity (or data type) appropriate to the domain of
a problem. This is the strongest use of packages for structuring a
program. It corresponds to the requirement of functional cohesion
for subprograms (see subparagraph 3.6.1.1.1) and contributes to the
goal of making the structure of a program reflect the structure of
its problem domain.

b. Collect related type and object declarations which are used together
(this kind of package should be used only to provide a common set of
declarations for two or more library units). Further, it is better
to minimize the declaration of variables in these packages. Overuse
of packages of variables results in a FORTRAN COMMON block style
program decomposition which defeats the abstraction and information
hiding properties of packages (see subparagraph 3.6.1.2.6.2).

c. Group together program units for essential configuration control or
visibility reasons. This type of package should be used sparingly
since it gives no additional information to a human reader on the
structure of the program but might, for example, be used to divide a
large program at the top level into subsystems to be developed by
separate teams. However, it would be best if these subsystem
packages fulfilled at least one of the other two purposes in addition
to this one.

Packages should NOT be designed based on the procedural structure of the code
which calls them. For example, a group of procedures should not be packaged
simply because they are all called at system initialization, or because they
are always called in a certain sequence. Such a package is closely coupled to
the context in which it is used and is not very understandable, reusable, or
maintainable as a unit.

A logical hierarchy of ->:ckages should be used to reflect or model levels of
abstraction.

3.6.1.1.2.2 Nesting. The nesting of packages in Ada software development
should adhere to the following guidelines:

a. Nesting of a package specification inside another package
specification should be avoided. When a package provides a good
abstraction, it hides the details of its implementation. Nesting one
package specification inside another either exposes too much of the
internal details of the outer package or indicates that the outer
package does not provide a good abstraction in the first place. It

S3-17

is usually better to nest the package specification within the body
of the outer package. Specific inner package operations can then be
called by outer package operations which are at the appropriate level
of abstraction for the outer package.

b. Any perceived need for the nesting of packages must be referred to
and approved by the Government Project Officer (approval may not be
given by the contractor Project Manager). Upon approval, the
following guidelines apply:

(1) Nested package bodies should be separate subunits.

(2) Subprogram bodies within a package should be separate subunits.

(3) Packages should not be nested within subprograms except within
the main procedure. A possible exception to this recommendation
is when a package has objects of variable size which can be
allocated when a procedure is called. For example, suppose some
data processing uses a BUFFER package which implements a buffer
area of a user-specified size:

procedure PROCESS_DATA (BUFFER-SIZE : POSITIVE) is

package body BUFFER is

type BUFFERTYPE is array (INTEGER range C>) of DATUM;
BUFFERAREA : BUFFER-TYPE (1..BUFFERSIZE);

end BUFFER;

Note, however, that the nested package cannot be reused outside
the context of the procedure. An alternative would be to
allocate the buffer using an access type. This would require
careful handling of allocation and deallocation, but would
result in a more self-contained package.

3.6.1.1.3 Visibility. Structural guidelines for visibility are grouped into
two areas of interest: the scope of identifiers and the proper usage of the
predefined STANDARD package.

3.6.1.1.3.1 Scope. The scope of identifiers should not extend further than
necessary. Where a scope is extended by "with" clauses, these clauses should
cover as small a region of text as possible. For example, "with" clauses
should be placed only on the subunits that really need them, not on their
parents. This promotes information hiding and reduces coupling. It can also
result in faster recompilation (due to dependency rules).

3-18

3.6.1.1.3.2 The Package STANDARD. The package STANDARD should not be named
in a "with" clause.

3.6.1.1.4 Tasks. Tasks are entities in Ada whose executions proceed in
parallel. Each task can be considered to be executed by a logical processor
of its own. Different tasks proceed independently, except at points where
they synchronize.

3.6.1.1.4.1 Utilization. Just as for packages (see subparagraph
3.6.1.1.2.1), it is best to have tasks which model problem domain entities.
However, in the case of tasks it is also necessary to have some tasks which
solely provide interfaces between other tasks and which handle the other
issues of concurrency and parallelism mentioned above. However, the program
should be structured around the tasks which represent problem-domain entities.
A task should fulfill one or more of the following:

a. Model a concurrent abstract entity appropriate to the problem domain.

b. Serve as an access-controlling or synchronizing agent for other
tasks, or otherwise act as an interface between asynchronous tasks.

c. Serve as an interface to asynchronous entities external to the
program (e.g., asynchronous I/O, devices, interrupts, etc.).

d. Define concurrent algorithms for faster execution o. multi-processor
architecture.

e. Perform an activity which must wait a specified time for an event or
have a specific priority.

3.6.1.1.4.2 Nesting. The nesting of tasks in Ada software development should
adhere to the following guidelines:

a. Usually, tasks should not be nested within tasks or subprograms,
except for the main procedure. It should be noted that a subprogram
containing a task cannot return until the task has terminated.

b. Nested task bodies should be separate subunits.

3.6.1.1.4.3 Visibility. When only certain entries of a task are intended to
be called by program components outside an enclosing package, it is preferable
to hide the task specification in the package body and introduce package
procedures which, in turn, call the actual entries. This helps to promote
information hiding and strengthens the abstraction of the enclosing package
(see subparagraph 3.6.1.1.2.2.a). It also hides the use of tasking within the
package. Note, however, that special care must be taken if the task entries
are to be called using conditional or timed-entry calls. In this case, the
outer package must provide special procedures or procedure parameters.

3-19

3.6.1.1.5 Program Structure and Compilation Issues. The overall structure of
programs and the compilation issues relevant to style guidelines are described
in this section.

3.6.1.1.5.1 Program Units. The compilation units of a program belong to a
"program library." A compilation unit defines either a library unit or a
secondary unit. A secondary unit is either the separately-compiled proper
body of a library unit, or a subunit of another compilation unit. The
designator of a separately-compiled subprogram (whether a library unit or a
subunit) must be an identifier. Within a program library, the simple names of
all library units must be distinct identifiers.

a. Library units should be used to allow configuration control of the
high-level functional subsystems of a program and for reusable
program units.

b. Nested program units should be used to allow direct access to objects
declared in an enclosing scope and to increase the structural hiding
of the internal implementation details of an enclosing program unit.

c. Bodies of nested program units should be made separate unless they
are small enough not to affect the readability of the enclosing unit.
The determination as to whether the unit is small enough rests with
the Project Manager.

d. Library units in a package structure are preferable to library units
which are subprograms. Library units providing services to the main
program should always be packages.

3.6.1.1.5.2 WITH Clauses. A context clause is used to specify the library
units whose names are needed within a compilation unit. The "with" context
clause is discussed below:

a. No unit should have a "with" clause for a unit it does not need to
see directly.

b. If only a small part of a given unit needs access to a library unit,
then it should appear as a subunit and have its own "with" clause for
that library unit (see subparagraph 3.6.1.1.3.1).

3.6.1.1.5.3 Program Unit Dependencies. The rules defining the order in which
units can be compiled are direct consequences of the visibility rules and, in
particular, of the fact that any library unit that is mentioned by the context
clause of a compilation unit is visible in the compilation unit.

A compilation unit must be compiled after all library units named by its
context clause. A secondary unit that is a subprogram or package body must be
compiled after the corresponding library unit. Any subunit of a parent
compilation unit must be compiled after the parent compilation unit.

3-20

a. Excessive dependencies between compilation units should be avoided,
especially the use of complicated networks of "with" clauses.

b. It is preferable to limit program unit dependencies to a tree
structure whenever possible.

3.6.1.1.6 Exception Propagation. Exceptions propagated by a program unit
should be considered part of the abstraction or function represented by that
unit. Therefore, it should only propagate exceptions which are appropriate to
that level of abstraction. If necessary, an exception which cannot be handled
by a unit at one level of abstraction should be converted into an exception
which can be explicitly recognized by the next-higher level. For example, a
STACK package should provide a STACKFULL exception instead of propagating a
CONSTRAINTERROR. Similarly, a MATRIXINVERSE function should raise a
program-specified MATRIXISSINGULAR exception rather than propagating a
NUMERICERROR.

3.6.1.1.7 Generic Units. A generic unit is a program unit that is either a
generic subprogram or a generic package. A generic unit is a "template,"
which is parameterized or not, and from which corresponding (non-generic)
subprograms or packages can be obtained. The resulting program units are said
to be "instances" of the original generic unit.

3.6.1.1.7.1 Utilization. Generics should be used in situations where there
are no equivalent normal programming constructs and, when used, a generic
program unit should fulfill one or more of the following purposes:

a. Provide logically equivalent operations on objects of different type.

b. Parameterize a program unit by a subprogram value.

c. Provide a data abstraction required at many points in a program, even
if no parameterization is required.

3.6.1.1.7.2 Generic Library Units. Generic units should be library units.

3.6.1.1.7.3 Generic Instantiation. An instance of a generic unit is obtained
as the result of a generic instantiation with appropriate generic actual
parameters for the generic formal parameters. An instance of a generic
subprogram is a subprogram and an instance of a generic package is a package.

a. The most commonly used generic instantiations should be placed in
library units.

b. Generic instantiations should be used cautiously within generic
units.

3.6.1.1.8 Encapsulation. The following subparagraphs discuss the use of Ada
coding structures which limit the portability of developed applications.

3-21

Usage of any features discussed in this paragraph require the approval of the
contractor Project Manager (final approval by the Government Project Officer).

3.6.1.I.a.I ~rc sntion '1,tuz and T r;nmont ation-Dependent Featuins.
Representation clauses and implementation-dependent features should, if
possible, be hidden inside packages which present implementation-independent
interfaces to users.

3.6.1.1.8.2 Input-Output. The following issues relevant to input/output
(I/O) processes should be utilized such that hardware dependencies are
limited:

a. Use of the predefined package LOWLEVELIO procedures should always
be encapsulated in packages or tasks.

b. Use of the LOWLEVEL_10 procedures should be encapsulated in task
objects associated with each item of controlled equipment.

c. File management and textual I/O software should be encapsulated in
specialized packages with simple interfaces. This should include
file interface code, textual formatting code and user interface code.
User interface encapsulation can be especially useful when a system
must accommodate increasing levels of user interface sophistication
or changing user needs over its lifetime. In these cases, it is
crucial that details of the implementation of the user interface be
hidden so that changes can be made to it without affecting the rest
of the system.

Approval for the use of this feature must be obtained from the Government
Project Officer (the contractor Project Manager may not give approval).

3.6.1.2 Coding Guidelines. The following subparagraphs define and discuss
guidelines to be used in Ada source code generation. These guidelines are
grouped into the following topics: lexical elements; declarations and types;
names and expressions; statements; subprograms; packages; visibility; tasks;
exceptions; generic units; representation clauses and implementation-dependent
features; and input-output.

3.6.1.2.1 Lexical Elements. The text of a program consists of the texts of
one or more compilations. The text of each compilation is a sequence of
separate lexical elements. Each lexical element is either a delimiter, an
identifier (which may be a reserved word), a numeric literal, a character
literal, a string literal, or a comment. Each lexical element must fit on one
line, since the end of a line is a separator.

3.6.1.2.1.1 The Package STANDARD. Language words with predefined meanings in
package STANDARD should not be redefined.

3-22

3.6.1.2.1.2 Comments. Comments should be used to add information for the
reader or to highlight sections of code, and should not merely paraphrase the
code.

3.6.1.2.2 Declarations and Types. Ada defines several kinds of entities that
are declared, either explicitly or implicitly, by declarations. Certain forms
of declaration always occur explicitly as part of a basic declaration. These
forms are discriminant specifications, component declarations, entry
declarations, parameter specifications, generic parameter specifications, and
enumeration literal specifications. A loop parameter specification is a form
of declaration that occurs only in certain forms of a loop statement. The
remaining forms of declaration are implicit: the name of a block, the name of
a loop, and a statement label.

A type declaration declares a type. The elaboration of a full type
declaration consists of the elaboration of the discriminant part, if any
(except in the case of the full type declaration for an incomplete or priv±te
type declaration), and of the elaboration of the type definition.

3.6.1.2.2.1 Constants. A declared object is a constant if the reserved word
"constant" appears in the object declaration which must then include an
explicit initialization. The value of the constant cannot be modified after
initialization.

a. An object should be declared constant if its value is intended not to
change.

5 Declaring an object to be constant clearly signals both the human
reader and the compiler the intention that its value will not change.
This not only increases readability, it also increases reliability
because the compiler will detect any attempt to tamper with the
object. Also, it can result in some decrease in executable size and
better run-time efficiency.

b. Defining a constant object is preferable to using a numeric literal
or expression with constant value, as long as the constant object has
an intrinsic conceptual meaning.

There is no use to defining a constant object when a numeric literal
is obviously more appropriate. For example, using "ONE" instead of
"1". However, the use of constant objects with intrinsic meaning
(such as "BUFFERSIZE" or "FIELDOFVIEW") can greatly increase the
readability of code. Further, the code is more maintainable since a
change in a value will be localized to the constant declaration.

c. A named number (i.e., PI) should be used only for values that are
truly "universal" and "typeless." Other numeric constants should be
declared with an explicit type.

3-23

Such constants as "PI" and cardinal integers (e.g., a "number ot
things") should be named numbers. Note also that declaring a
constant in terms of a predefined numeric type (INTEGER, FLOAT, etc.)
L,.L L -ad;ant-g over a nam-d nYrb-r sir¢c. tbe prPriefined types

provide only range and accuracy constraints and no additional
conceptual meaning. In fact, since the range and accuracy of
predefined numeric types is implementation-defined, portability can
be increased by using named numbers, in those cases where a constant
of a user-defined type is not more appropriate.

NUMBEROFSENSORS : constant :- 4; -- This is a named number
MAINSENSORNUMBER : constant SENSORINDEX := 2;

3.6.1.2.2.2 Tyes. Separate types should be used for values that belong to
logically independent sets as well as for distinct concepts.

type XCOORDINATE is range 1..640;
type YCOORDINATE is range 1..480;
type PIXELVALUE is range 0..255;
type IMAGEGRID is array (XCOORDINATE, YCOORDINATE) of PIXELVALUE;

A data type characterizes a set of values and a set of operations applicable
to objects of the type. In the above example, each coordinate has a type
because coordinates are independent entities. Explicitly declaring these
types makes the concepts more obvious to a human reader and also allows the
compiler to detect mistakes such as:

image (Y, X) :- PIXEL; -- Should be "(X, Y)"

The drawback of this kind of typing is that the following construct is
illegal:

if X - Y then -- ILLEGAL since X and Y have different types

A type conversion must be used:

if X - XCOORDINATE(Y) then

Note that, depending on context (and compiler quality), there may or may not
be some run-time penalty associated with type conversion (e.g., testing of
range constraints).

3.6.1.2.2.3 Enumeration Types. An enumeration type should always be used in
preference to an integer type, unless the logical nature of the concept to be
modeled demands the other. For example:

type DEVICEMODE is (READ_ONLY, WRITEONLY, READWRITE);

3-24

. 3.6.1.2.2.4 Floating Types. To enhance portability, the range and accuracy
of a floating point type should be specified. The precision for the
predefined floating types (FLOAT, etc.) is implementation-dependent, though
=l ,,, iCUIi' r1.: 2at zix decimal digits of accuracy.
Explicitly declaring floating point ranges can yield more reliable and more
efficient as well as more portable code.

3.6.1.2.2.5 Record Types. A record type should be used instead of an array
type even when all the record components have the same type, as long as each
component can be sensibly named and the components do not need to be
dynamically indexed. The following example is preferable to defining COMPLEX
as an array of two FLOATS:

type COMPLEX is
record
REAL : FLOAT;
IMAGINARY • FLOAT;

eiti reccrd;

Overcomplicated record structures should be avoided by grouping related data
into subrecord types. For example:

type COORDINATE is
record
ROW : FLOAT;
COLUMN : FLOAT;

is end record;

type WINDOW is
record
TOPLEFT : COORDINATE;
BOTTOMRIGHT : COORDINATE;

end record;

Enumeration types should be used for discriminants of record variants whenever
possible. A discriminant should have a default initialization only if the
discriminant value is intended to change over the lifetime of an object.

3.6.1.2.2.6 Access Types. Access types should not be used when static types
and stack allocation would be sufficient. They should be used only when it is
necessary to have data structures with dynamic pointers or to dynamically
create objects. However, access types may be needed for static objects if
this leads to a more consistent programming style (e.g., so that similar
static and dynamic objects are treated identically). For example, if linked
lists are used in a program, there may be some lists which are constant, but
which would allow passing these constant lists to subprograms which also
handle dynamic lists.

3-25

3.6.1.2.2.7 Object Declarations. Each object declaration should declare only
one object. For example, the following objacts should be declared in separate
declarations even though they are all of the same type:

TABLESIZE : TABLERANGE;
TABLEINDEX : TABLERANGE;
CURRENTENTRY : TABLERANGE;

An object should not be declared using an unnamed constrained array
definition. The unnamed array definition is the only case in Ada where an
object can be declared to be of a type which does not have a name. Instead,
the array type should be named in an array definition, and that name used in
the object declaration, even if there is only one object declared of that
type.

type POOLTYPE is array (POOL-RANGE) of CHARACTER;

POOL : POOLTYPE;

O9jects should be initialized. Where possible, objects should always be
initiaiizcd by their declaration, rather than in later code.

ISFOUND : BOOLEAN :- FALSE;

3.6.1.2.3 Names and Expressions. Names denote declqred entities, whether
declared explicitly or implicitly. Names can also denote objects dezignatei
by access values; subcomponents and slices of objects and values single
entries, entry families, and entries in families of entries. Finally, names
can denote attributes of any of the foregoing.

An expression is a formula that defines the computation of a value. The type
of an expression depends only on the type of its constituents and on the
operators applied. For an overloaded constituent or operator, the
determination of the constituent type, or the identification of the
appropriate operator, depends on the context.

3.6.1.2.3.1 Aggregates. An aggregate is a basic operation (group of
component associations) that combines component values into a composite value
of a record or array type. Each component association associates an
expression with components (possibly none). A component association is
"named" if the components are specified explicitly by choices. Otherwise, it
is called "positional." For a positional association, each component is
implicitly specified by position--in the order of the corresponding component
declarations for record components, in index order for array components.

a. Aggregates are preferable to individually setting all or most of the
components of an array or record.

b. Named aggregates, rather than positional aggregates, should be used
wherever possible.

3-26

c. The "others" choice should not be used within aggregates without good
reason. Individual cases must be referred to the contractor Project
Manager for approval (final aproval given by the Government Project
Officer).

3.6.1.2.3.2 Static Expressions. Where possible, universal expressions are
preferable to static (but not universal) expressions, which are in turn
preferable to dynamic expressions.

Since they do not depend on run-time dynamics, static expressions are easier
for a human reader to understand. Also, universal expressions maximize
accuracy and portability, and static expressions eliminate run-time overhead.

3.6.1.2.3.3 Short-Circuit Control. Short-circuit control forms should be
used only to avoid evaluation of an undefined or illegal expression and not to
merely optimize execution. Use of short-circuit forms must be approved by the
Government Project Officer (approval ma,: not be given by the contractor
Project Manager).

(N /- 0) and then (TOTAL/N > LIMIT)
(INDEX = 0) or else USER(INDEX).NOTAVAILABLE

The short-circuit control forms should be used to signal to a human reader
that the correctness of the second condition depends on the results of the
first. They should not be used for micro-efficiency reasons, concerns better
handled by an optimizing compiler. If efficiency considerations are
subztantially important, "if" statements should be used instead of the
short-circuit forms with functions used to avoid repeated code, if necessary.

3.6.1.2.3.4 Type Qualification. An explicit type -oniversion should not be
used if a type-qualified expression is meant:

Good: LONGFLOAT'(3.14159)
Bad: LONGFLOAT (3.14159)

A qualified expression is used to state explicitly the type, and possibly
subtype, of a value. A type conversion, however, results in the dynamic
conversion of a value to a target type. Sometimes a type conversion can be
used to serve the purpose of a type qualification. However, if the operand is
already of the desired base type, a conversion is not really necessary and a
qualification should be used instead.

Situations where type qualification is necessary should be avoided if
possible. Other than where absolutely necessary, type qualification may be
justified only if it makes the program clearer to a reader. The mail case to
avoid is when the type of an enumeration literal or aggregate is not known
from context. For example:

type COLOR is (BLACK, RED, GREEN, BLUE, WHITE);
type LIGHT is (RED, YELLOW, GREEN);

03-27

procedure SET (COLOR_CODE in COLOR);
procedure SET (COLORCODE in LIGHT);

SET (COLOR'(RED)); -- Type qualification must be used here to
SET (LIGHT'(RED)); -- resolve the overloading of SET and RED.

In this case, it would be better to rename one of the SET procedures, or to at
least give them different parameter names so the overloading could be resolved
using named notation.

3.6.1.2.4 Statements. A statement defines an action to be performed and is
either simple or compound. A simple statement encloses no other statement. A
compound statement can enclose simple statements and ther compound

statements.

3.6.1.2.4.1 Slice Statements. krray slice assignments should be used rather
than loops, to copy all or part of an array. This is more readable and less
error prone, especially in the case of slices with overlapping ranges.

CLIENTLIST (LASTCLIENT..NUMBEROFCLIENTS)

NEWCLIENTS (I..NUMNEWCLIENTS);

3.6.1.2.4.2 IF Statements. An "if" statement should not be used to create

the effect of a "case" statement controlled by the value of an enumeration
type other than BOOLEAN.

3.6.1.2.4.3 CASE Statements. A "case" stacement should not be controlled by
a BOOLEAN value and, when possible, the explicit listing of all choices on a
"case" statement is preferable to the use of an "others" clause. This makes
it easier for a human reader to see that the proper actions are being taken in
all cases. Further, if the enumeration type of the control expression is
modified, the compiler will indicate overlooked alternatives. However, there
are cases when an "others" clause makes sense. For example, if the control
expression is of type CHARACTER, then it is usually best to use an "others"

clause to handle the "undesired characters" case.

3.6.1.2.4.4 Block Statements. Blocks should be used cautiously to introduce
local declarations or to define a local exception handler. To some extent, a
block can be thought of as a procedure which is hard-coded in-lile. However,
a procedure call contributes to readability precisely by not having its source
code in-line (providing a "functional abstraction"). Therefore, blocks should
always be used cautiously and only for specific purposes. Thought should
always be given to using a procedure call instead of a block to improve
readability. Declarations of objects used only within a block should be
nested within the block. Block usage must be approved by the contractor
Project Manager (final approval by the Government Project Officer).

3-28

3.6.1.2.4.5 EXIT Statements. "Exit" statements should be used cautiously and
only ..hen they significantly enhance the re7'.*iliLy of the code. It is often
more readable to use "exit" than to try to add BOOLEAN variables to a "while"
loop condition to simulate exits froui the middle cf a loop. However, it can
be difficult to understand a program where loops can be exited from multiple

places. If possible, it is best to limit the use of "exit" statements to one
per loop and it is more readable still to use "exit when". Use
"if.. .then... exit, end if;" when "last wishes" processing is needed.

3.6.1.2.4.6 RETURN Statements. It is preferable to minimize the number of
return points from a subprogram, as long as this does not distract from the
natural structure or readability of the subprogram.

3.6.1.2.4.7 GOTO Statements. Neither "goto" statements nor labels should
ever be used. Use of Lhe "goto" makes the textual structure of code less
reflective of its logical structure. Possible uses of the "goto" statement
can always be handled by other constructs in Ada. Cases in Ada when the
"goto" still seems appropriate almost always indicate poorly designed code.

It is better to redesign the code than to use the "goto" statement.

3.6.1.2.5 Subprograms. A subprogram is a program unit whose execution is
invoked by a subprogram call. There are two forms of subprograms: procedures
and functions.

3.6.1.2.5.1 Parameters. The following guidelines should be utilized with
subprogram parameter specifications:

a. Subprograms with equivalent parameters should generally declare each
parameter in the same position with the same identifier.

b. Parameters with defauli expressions should usually be used only when
they have very well known default values and/or they are defaulted
most of the time and the default is only overridden in special

circumstances.

c. Parameters with default expressions should generally be placed at the
end of the parameter list, so that they may be omitted if desired in

calls using positional notation.

3.6.1.2.5.2 Recursion. A recursive subprogram should be used only if two
conditions exist: (1) it is conceptually simpler for a given problem than a
corresponding iterative subprogram and (2) a waiver has been obtained from the
contractor Project Manager (final approval for the waiver is obtained from the
Government Project Officer).

3.6.1.2.5.3 Functions. A subprogram without side-effects returning a single
value should generally be written as a function. Since functions can be

called from within expressions, there is more freedom in how a function can be
used. For example, if a function is to be called only once within some other
subprogram, it can be used to initialize a constant object.

3-29

procedure PROCESSSENSORDATA is

MAINSENSORDATA : constant SENSORDATA
- READSENSOR (MAINSENSORINDEX);

begin -- PROCESSSENSORDATA

However, if this sort of freedom is specifically not desired, or if a
subprogram has side effects, then use of a procedure should be considered
instead of a function, even if the subprogram returns only a single value.

3.6.1.2.5.4 Overloading. Overloading of subprograms should not be used
except in the following cases:

a Widely used utility subprograms which perform identical or very
similar actions on arguments of different types (e.g., square-root of
integer and real arguments)

b. Overloading of operator symbols.

Note that this is not meant to cover subprograms wita identical names in
different packages, unless both subprograms are visible through "use" clauses
for their packages.

Cperator symbols should be overloaded only when the new operator definitions
comply closely with the traditional meaning of the operator (e.g., "+" for
vector addition). For example, "+" might be used for vector addition, but
should certainly not be used for vector dot product.

3.6.1.2.6 Packages. Packages allow the specification of groups of logically
related entities. In their simplest form, packages specify pools of common
object and type declarations. More generally, packages can be used to specify
groups of related entities including subprograms that can be called from
outside the package, while their inner workings remain concealed and protected
from outside users.

3.6.1.2.6.1 Initialization. Calls from the initialization statements of a
package to subprograms outside the package should be avoided.

3.6.1.2.6.2 Visible Variables. Variable declarations in package
specifications should be minimized. The use of variables in a package
specification reduces the abstraction and information hiding properties of
that package. For example, a variable cannot provide protection against being
changed by units other than the package. Therefore, it is better to use a
function rather than a variable to read data from a package. It is also
better to use a procedure rather than a variable to give data to a package,
since a variable cannot trigger any package operations and a variable
declaration often exposes some internal data representation details of the
package.

3-30

The private part of a package specification should only be used to supply the
full definitions of private types and deferred constants; all other
declarations should be put- in the package body.

If possible, objects of private type should be initialized by default.

3.6.1.2.7 Visibility. The concept of visibility within Ada is very
important. The visibility rules determine which library units can "see" as
well as those that can "be seen." For this purpose, the "use" context clause
as well as dot notation are the two main tools available.

3.6.1.2.7.1 The USE Clause. Contractor Project Manager approval is required
for utilization of the "use" clause in all cases except for the predefined
package TEXT10 (final approval by the Government Project Officer). Upon
approval, the following guidelines for isage apply:

a. For packages of commonly known utility operations used throughout a
program (e.g., MATHLIB)

b. To make overloaded operators visible, so that they may be used in
infix notation

c. For predefined input/output packages (e.g., TEXT_IO, instantiations
of INTEGER_IO, etc.)

d. To make enumeration constants visible so that they can be namedS without using the dot notation.

Note that even when a "use" clause is used, the dot notation should still be
used in cases other than those listed above.

3.6.1.2.7.2 Renaming Declarations. For a name with a large number of package
qualifications, a renaming declaration may be used to define a new shorter
name. The new identifier should still reflect the complete meaning of the
full name. In any case, the usage of Ada's renaming capability requires the
approval of the contractor Project Manager (final approval by the Government
Project Officer).

For a function which can be appropriately represented by an operator symbol
name (see subparagraph 3.6.1.2.5.4), a renaming declaration may be used to
give it such a name. For example, a MATRIX_MULTIPLY function could be renamed

3.6.1.2.7.3 Redefinition. Items from the package STANDARD should not be
redefined or renamed and redefinition of an identifier in different
declarations should be avoided.

3.6.1.2.8 Tasks. Tasks are entities in Ada whose executions proceed in
parallel. Each task can be considered to be executed by a logical processor

P 3-31

of its own. Different tasks proceed independently, except at points where
they synchronize.

3.6.1.2.8.1 Task Types. The following rules should be observed when
utilizing task types:

a. A task type should be used only when multiple instances of that type
are required. Otherwise a directly named task should be used.

b. Identical tasks should be derived from a common task type.

c. Static task structures should be used whenever they are sufficient.
Access types to task type should be used only when it is essential to
create and destroy tasks dynamically, or to be able to change the
names with which they are associated.

3.6.1.2.8.2 Task Termination. A task nested within the main program must
terminate by reaching its "end", or must have a selective wait with a
terminate alternative. All tasks nested within a program must terminate
before the program can terminate. Therefore, if this guideline is not
followed, it will be impossible for the main program to ever terminate other
than by aborting all nested tasks. However, "abort" statements are to be
avoided (see subparagraph 3.6.1.2.8.7).

Tasks dependent on library units should not use the "terminate" alternative of
a select statement. Therefore, other provision should be made for the
graceful termination of such tasks at system close down. Tasks which are
dependent on library units will not terminate due to a "terminate"
alternative. Therefore, a library unit task should have an entry which forces
termination. If it does not, an "abort" statement in the main program may be
used to terminate the task. However, "abort" statements are to be avoided
(see subparagraph 3.6.1.2.8.7).

3.6.1.2.8.3 Entries and ACCEPT Statements. The following guidelines must be
used when making "entry" calls and using "accept" statements:

a. Only those actions should be included in the "accept" statement which
must be completed before the calling task is released from its
waiting state.

b. A task should never call its own entries, even by indirection. This
would result in a deadlock.

c. Conditional entry calls should be used sparingly to avoid unnecessary
busy waiting.

3.6.1.2.8.4 DELAY Statement. A "delay" statement should be used whenever a
task must wait for some known duration. A "busy wait" loop should never be
used for this purpose.

3-32

It is important to remember that "delay t" provides a delay of at least t
seconds, but possibly more. A program should not rely on any upper bound for
this delay, especially when tasks are used (since tasks must compete for CPU
time). The following example shows how to alleviate this problem in a
periodic activity:

NEXTTIME :- CALENDAR.CLOCK + REQUIRED-PERIOD;

PERIODICACTIVITY:
while STILLTIME loop

-- Perform activity

-- Correct for delay statement incertitude

PERIOD :- NEXTTIME - CALENDAR.CLOCK;

if PERIOD < 0.0 then -- Processing was too slow
NEXTTIME :- CALENDAR.CLOCK; -- Avoid cumulative effect

end if;

NEXTTIME :- NEXTTIME + REQUIRED_PERIOD;

delay PERIOD;

end loop PERIODICACTIVITY;

The "delay" statement should normally only be used to manage interaction with
some external process which works in real time, or to create a task which
behaves in a well-defined manner in real time.

3.6.1.2.8.5 Task Synchronization. Knowledge of the execution pattern of
tasks (e.g., fixed, known time pattern, etc.) should not be used to avoid the
use of explicit task synchronization.

3.6.1.2.8.6 Priorities. Only a small number of priority levels should be
used. The priority levels used should be spread over the range made available
to type PRIORITY in the implementation. Names should be given to the priority
levels by declaring constants of predefined type PRIORITY and grouping these
declarations into a single package.

Using only a small number of priority levels makes the interaction of the
various prioritized tasks easier to understand. On the other hand, spreading
the levels across the available range allows easy insertion of a new level
between existing levels if this later becomes necessary. As with other
literal numbers, the use of names is more readable than the use of the
literals. Further, for priorities, the allowable range of levels is
implementation-dependent. Naming priority levels by constant declarations

S 3-33

grouped into a single package restricts the implementation-dependency to that
package. For example:

with SYSTEM;
package PRIORITYLEVELS is

LOWEST : constant SYSTEM.PRIORITY :- SYSTEM.PRIORITY'first;
HIGHEST : constant SYSTEM.PRIORITY := SYSTEM.PRI3RITY'last;
NUMBER : constant HIGHEST - LOWEST + 1;
AVERAGE : constant SYSTEM.PRIORITY :- NUMBER / 2;
IDLE : constant SYSTEM.PRIORITY := LOWEST;
BACKGROUND : constant SYSTEM.PRIORITY := AVERAGE - 20;
USER : constant SYSTEM.PRIORITY :- AVERAGE - 10;
FOREGROUND : constant SYSTEM.PRIORITY := AVERAGE + 10;

end PRIORITYLEVELS;

For any group of related tasks, suc.h as those declared within the same program
unit, priorities should be specified either for all, or for none of them.
This avoids confusion about the scheduling of tasks with undefined priorities.

3.6.1.2.8.7 ABORT Statements. Abortion of tasks should generally be avoided.
Aborting a task can produce unpredictable results. In particular, do not
assume anything about the moment at which an aborted task becomes terminated.
The "abort" statement should be used only in case of unrecoverable failure.

3.6.1.2.8.8 Shared Variables. When "sharing" variables between tasks, the
following guidelines must be utilized:

a. Tasks should not directly share variables unless only one of them can
possibly be running at any one time.

b. Any task which uses shared variables should identify in its
documentary comments all the shared variables that it uses.

3.6.1.2.8.9 Local Exception Handling. To allow the handling of local
exceptions without task termination, a task should generally have a block

statement with an exception handler coded within its main loop.

begin -- SOMETASK

MAINLOOP:
loop

LOCAL:
begin -- LOCAL

-- Task code for this block

exception

3-34

*... handle local exceptions ...

end LOCAL;
end MAINLOOP;

exception
... handle fatal exceptions ...

end SOMETASK;

3.6.1.2.9 Exceptions. The Ada facilities for handling errors or other
exceptional situations that arise during program execution are called
exceptions or exception handlers.

3.6.1.2.9.1 Utilization. An exception should be used only for one or more of
the following reasons:

a. lt reports an irregular event which is outside the normal operation
of a program unit or in some sense an error.

b. It is used where it can be argued that it is safer (more defensive)
than the alternative, in particular to guard against omissions of
error checking code for especially harmful errors.

c. It reports an event for which it is inconvenient or unnatural to test
at the point of cause/occurrence and thus use of the exception
enhances readability. Exceptions declared in package specifications
are really part of the abstraction defined by that package.
Therefore, their use should be integral to the design of the package
(see subparagraph 3.6.1.1.5.1).

Also, note that the predefined exceptions should be used with care. Due to
allowable implementation differences, they should not be relied upon to
indicate particular circumstances.

Exceptions should not be used as a means of returning normal state
information. For example, a STACK package may have STACKFULL and STACKEMPTY
exceptions which are raised by its PUSH and POP subprograms. However, these
subprograms should not be used solely to raise exceptions to test if the
appropriate conditions are true. Instead, the package should provide BOOLEAN
functions such as FULL and EMPTY to test for these state conditions.

3.6.1.2.9.2 Exception Handlers. The following rules apply when using
exception handlers in Ada programs:

a. The exception handler choice "others" should be used only if it is
necessary to ensure that no UNANTICIPATED exception can be propagated
or if some special action must be taken before propagation. For
example, important tasks should generally have an "others" clause in
a local exception handler (see subparagraph 3.6.1.2.8.9) to prevent

3-35

them from terminating due to unanticipated exceptions. However, in
the case when it can be expected that a certain exception may
sometimes occur, then that exception should always be explicitly
named in the exception handler.

b. Recursion should not be used within an exception handler.

c. Exception handlers on block statements should be used sparingly. One
of the advantages of using exceptions is that it separates the error
handling code from the more often executed normal-processing code.
Excessive use of exception handlers in block statements can defeat
this advantage.

3.6.1.2.9.3 RAISE Statements. A "raise" statement raises an exception. For
the execution of a raise statement with an exception name, the named exception
is raised. A raise statement without an exception name is only allowed within
an exception handler. It raises again the exception that caused transfer to
the innermost enclosing handler.

a. Exceptions declared in the specification of a package which
represents a problem domain entity should not be raised outside that
package. Exceptions declared in a package specification should be
considered part of the abstraction defined by that package. These
exceptions provide special "signals" from the package operations, and
thus should not be raised outside of the package.

b. Exceptions raised within a task should always be handled within that
task. Note that in the case of an exception raised during a
rendezvous, the exception will also be propagated back to the point
of the entry call.

c. The predefined exceptions should generally not be explicitly raised.

3.6.1.2.9.4 Exception Propagation. Exceptions should not be allowed to
propagate outside their own scope. An exception may be allowed to propagate
to any point where it can be named in an exception handler. Note that this
includes the case where an exception is defined in a package specification and
has its scope "expanded" by a "with" clause. What must be avoided are cases
such as the following:

procedure RAISEEXCEPTION is

HIDDENEXCEPTION : exception;

begin -- RAISEEXCEPTION
raise HIDDENEXCEPTION;

end RAISEEXCEPTION;

begin -- MAINPROGRAM

3-36

RAISEEXCEPTION;
-- "HIDDEN EXCEPTION" CANNOT be named at this point

3.6.1.2.9.5 Suppressing Checks. Checks should not be suppressed except for
essential efficiency or timing reasons in thoroughly tested program units.

3.6.1.2.10 Generic Units. A generic unit is a program unit that is either a

generic subprogram or a generic package. A generic unit is a "template,"
which is parameterized or not, and from which corresponding (non-generic)

subprograms or packages can be obtained. The resulting program units are said

to be "instances" of the original generic unit.

3.6.1.2.10.1 Generic Formal Subprograms. The actual subprograms associated
with the formal subprogram parameters of a generic unit should be consistent
with the conceptual meanings of the formal parameters (e.g., only functions
which are conceptually "adding operations" should be associated with a formal

parameter named "plus").

Operator symbol function generic parameters should generally be provided with

a box default body ("is O").

with function "<" (X, Y : ITEM) return BOOLEAN is <>;

3.6.1.2.10.2 Use of Attributes. In writing generic bodies, attributes should

be used as much as possible to generalize the code produced.

3.6.1.2.11 Representation Clauses and Implementation-Dependent Features.
Usage of any features discussed in this paragraph requires the approval of the
contractor Project Manager (final approval by the Government Project Officer).

3.6.1.2.11.1 Utilization. Machine dependent and low-level Ada features
should not be used except when absolutely necessary. Representation clauses
and implementation-dependent features should only be used for one of the

following:

a. To increase efficiency (when absolutely necessary)

b. For interrupt handling

c. To specify task storage size

d. For address clauses to be used with entries only to associate them

with hardware interrupts.

Representation clauses should not be used to change the meaning of a program.

3.6.1.2.11.2 Interrupts. Interrupt routines should be kept as short as

possible. Usage of interrupts may not be approved by the contractor Project

3-37

Manager. Approval by the Government Project Officer is required prior to
usage.

3.6.1.2.12 Input-Output. Usage of any features discussed in this paragraph

requires the approval of the contractor Project Manager (final approval by the

Government Project Officer).

3.6.1.2.12.1 Text Formatting. Line and page formatting should be done using
the NEWLINE and NEWPAGE subprograms, rather than explicitly writing
end-of-line or end-of-page characters.

3.6.1.2.12.2 Low-Level Input-Output- Use of package LOWLEVEL_10 should be

avoided unless absolutely necessary. Approval for usage of this feature must
be obtained from the Government Project Officer (the contractor Project

Manager may not approve usage of this Ada feature).

3.6.1.2.12.3 FORM Parameter. Use of the FORM parameter of the OPEN and
CREATE procedures should generally be avoided. The "Form" parameter on the
file OPEN and CREATE procedures specifies system-dependent file

characteristics. This an reduce both readability and portability, and so
should only be used if absolutely necessary.

3.6.1.3 Format Guidelines. The following subparagraphs specifically
delineate the guidelines to be used in Ada source code generation. These
guidelines Pre grouped into the following topics: lexical elements;

declarations and zyges; names and expressions; statements; subprograms;

packages; tasks; compilation units; exception declarations; generic units; and
representation clauses.

3.6.1.3.1 Lexical Elements. The text of a program consists of the texts of
one or more compilations. The text of each compilation is a sequence of

separate lexical elements. Each lexical element is either a delimiter, an

identifier (which may be a reserved word), a numeric literal, a character

literal, a string literal, or a comment. Each lexical element must fit on one
line, since the end of a line is a separator.

3.6.1.3.1.1 Indentation. The standard indentation is two spaces.

3.6.1.3.1.2 Character Set. Full use should be made of the International

Standards Organization (ISO) character set where available. Alternate
character replacements should only be used when the corresponding graphical

symbols are not available.

3.6.1.3.1.3 Uppercase/Lowercase. Reserved words and attributes should appear
in lowercase. Type, user-specified variable names, and enumeration value

identifiers should appear in all uppercase.

LONGINTEGER

AUTHORITYLEVEL
(RED, GREEN, BLUE)

3-38

(ARMY, AIRFORCE, NAVY, MARINES)

3.6.1.3.1.4 Identifiers. When specifying identifiers in source code, the
following rules must be utilized:

a. Identifier names should be meaningful and easily distinguishable from
each other, except possibly for loop parameters, array indices, and
common mathematical variables, which may be as short as only one

character.

b. Distinct words in identifiers should always be separated by

underscores "

c. The use of abbreviations in identifiers should be avoided. When
used, an abbreviation should be significantly shorter than the word

it abbreviates, and its meaning should be clear. The same
abbreviations should be used consistently throughout a project.

3.6.1.3.1.5 Spaces. Single spaces should be used consistently between
lexical elements to enhance readability.

3.6.1.3.1.6 Blank Lines. Blank lines should be used to group logically
related lines of text and a blank line should always follow a construct whose
last line is not at the same indentation level as its first line.

type COM±'LEX is

record
REAL : FLOAT;

IMAGINARY : FLOAT;
end record;

-- Followed by a blank line

3.6.1.3.1.7 Continuations. Statements extending over multiple lines should

always be broken BEFORE reserved words, operator symbols, or one of the

following symbols:

I > .. :

but they should be broken AFTER a comma (","). Unless otherwise specified in

later guidelines, all the continuation lines should be indented at least two

levels -- this is, four spaces -- with respect to the original lines they
continue.

CORRECTEDVALUE :- (1 + SENSOR-SCALE) * RAWVALUE
+ DISTORTIONFACTOR * DISTORTIONVALUE + SENSORBIAS;

Long strings extending over more than one line should be broken up at natural

boundaries, appropriate to the meaning of the contents of the string, if any.

3-39

"This is a rather long string, so it is likely that
& "it will extenG er more than one line"

3.6.1.3.1.8 Comments. Comments should begin with the "--" aligned with the
indentation level of the code that they describe, or to the right of the code,
aligned with other such comments.

-- Check if the user has special authorization
if AUTHORITY - SPECIAL then
DISPLAYSPECIALMENU; -- All operations are allowed

else
DISPLAYNORMALMENU; -- Only normal operations allowed

end if;

3.6.1.3.2 Declarations and Types. Ada defines several kinds of entities that
are declared, either explicitly or implicitly, by declarations. Certain forms
of declaration always occur explicitly as part of a basic declaration. These
forms are discriminant specifications, component declarations, entry
declarations, parameter specifications, generic parameter specifications, and
enumeration literal specifications. A loop parameter specification is a form
of declaration that occurs only in certain forms of a loop statement. The

zi.i,i fcim: of declaration are implicit: the name of a block, the name of
a loop, and a staterent label.

A type declaration declares a type. The elaboration of a full type
declaration consists of the elaboration of the discriminant part, if any
(except in the case of the full type declaration for an incomplete or private
type declaration), and of the elaboration of the type definition.

3.6.1.3.2.1 Commenting. Type declarations (or groups of declarations) should
be commented to indicate what is being defined, if that is not obvious from
the type declaration itself.

type VELOCITY is -- Inertial velocity relative to the Earth
array (1..3) of FLOAT;

Object declarations should be commented if the object definition is unclear
from the object and type identifiers alone. Note that those properties of an
object obtained from its type should not be repeated in comments on the object
declaration.

SPACECRAFTVELOCITY -- Spacecraft orbital velocity, assuming a
: VELOCITY; -- circular orbit

3.6.1.3.2.2 Indentation. All declarations in a single declaration part
should begin at the same indentation level.

3.6.1.3.2.3 Type Definitions. Array type definitions should have one of the
following formats:

3-40

type <type name> is array <index definition> of <subtype indicator>;
--

type <type name> is
array <index definition> of <subtype indicator>;

..

type <type name> is
array <index definition>

of <subtype indicator>;

Record type definitions should have one of the following formats:

type <type name> is
record
<component declaration>;
<component declaration>;

end record;

type <type name>
(<discriminant declaration>;
<discriminant declaration>) is

record
<component declaration>;
case <discriminant name> is
when <choices> =>

<component declaration>;
<component declaration>;

end case;
end record;

All <component declarations> and <discriminant declarations> should be
formatted like object declarations (see subparagraph 3.6.1.3.2.4).

Other type definitions should be formatted as follows:

type <type name> is <type definition>;

subtype <type name> is <subtype indicator>;

Long enumeration type declarations should be formatted into easily readable
columns.

3.6.1.3.2.4 Object Declarations. Object declarations should have one of the
following formats. The preferred formats are:

<object name> : <subtype indicator> :- <expression>;
..

<object name> : <subtype indicator>
<expression>;

3-41

In the first case, all such declarations textually grouped together or
appearing as components in a single record definition or in a single parameter
list should have their ":" and ":-" symbols aligned.

3.6.1.3.3 Names and Expressions. Names denote declared entities, whether
declared explicitly or implicitly. Names can also denote objects designated
by access values; subcomponents and slices of objects and values; single
entries, entry families, and entries in families of entries. Finally, names
can denote attributes of any of the foregoing.

An expression is a formula that defines the computation of a value. The type
of an expression depends only on the cype of its constituents and on the
operators applied. For an overloaded constituent or operator, the
determination of the constituent type, or the identification of the
appropriate operator, depends on che context.

3.6.1.3.3.1 Names. The name for a type should be a common noun indicating
the class of the objects it contains. For example:

DEVICE
AUTHORITYLEVEL
USERNAME
PHONELIST

A type name may also end with the suffix "TYPE". For example:

EMPLOYEETYPE
SCHEDULETABLETYPE
COLORTYPE

The names of non-BOOLEAN valued objects should be nouns, preferably more
....i- !than the names of types. For example:

CURRENTUSER • USERNAME;
OUTPUTDEVICE : DEVICE;
SCHEDULETABLE : SCHEDULETABLETYPE;
NEWEMPLOYEE • EMPLOYEETYPE;

BOOLEAN valued objects should have predicate-clause (e.g., "IS OPEN") or
adjective names. For example:

USERISAVAILABLE
LISTEMPTY
DONE
NnT_READY
ISWAITING

3.6.1.3.3.2 Parentheses. Syntactically redundant parentheses should
generally be used to enhance the readability of expressions, especially by
indicating the order of evaluation. For example:

3-42

VARIANCE :- (ROLLERROR ** 2) + ((YAWERROR ** 2) / 2);

3.6.1.3.3.3 Aggregates. When longer than two or three components, or
whenever readability is improved, named aggregates should be formatted as
indicated below, with one association per line and the "=>" arrows aligned.

OUTPUTDEVICE :-
(DEVICE -> DISK,

STATUS => CLOSED,
CYLINDER 1=> ,
TRACK -> STARTUPTRACK_NUM);

Aggregates for tabular data structures may instead be formatted in a tabular
fashion, so as to enhance readability.

3.6.1.3.3.4 Continuation. When a long expression is broken over more than
one line, it should be broken near the end of the line before an operator

symbol with the lowest reasonable precedence.

CORRECTEDVALUE :- (1 + SFNSORSCALE) * RAWVALUE
+ DISTORTIONFACTOR * DISTORTIONVALUE + SENSORBIAS;

3.6.1.J.4 Statements. A statement defines an action Lo be performed and is
either simple or compound. A simple statement encloses no other scatement. A
compound statement can enclose simple statements and other compound
statements.

3.6.1.3.4.1 Statement Sequences. Blank lines should be used liberally to
break sequences of statements into short, meaningful groups (see subparagraph

3.6.1.3.1.6).

PUT_LINE ("Welcome to the Electronic Message System");

LOCON_USER (CURRENTUSER);
USERDIRECTORY.LOOKUP

(USERNAME => CURRENTUSER,

AUTHORITY => USERAUTHORITY);

if USERAUTHORITY - SPECIAL then
PUTLINE ("** You have SPECIAL authorization **");

end if;

3.6.1.3.4.2 IF Statements. Multiple conditions in an "if" clause should be
grouped together, placed on appropriate lines, and aligned so as to enhance
clarity. "If" statements shuuld have the following format:

if <condition> then

<statement>;
<statement>;

03-43

elsif <condition> then

<statement>;
<statement>;

else
<statement>;
<statement>;

end if;

3.6.1.3.4.3 CASE Sta-ements. "Case" statements should have the following

format and note that the arrows "=>" should be aligned:

case <expression> is
when <choices> ->

<statement>;
<statement>;

when others ->

<statement>;
<statement>;

end case;

3.6.1.3.4.4 LOOP Statements. A loop should preferably have a loop identifier

(name) and must have one of the following formats:

<loop name>:
<iteration scheme> loop
<statement>;
<statemert>;

end loop <loop name>;
......---------------

<iteration scheme> loop

<statement>;
<statement>;

end loop;

3.6.1.3.4.5 Block Statement. Blocks should always have a block identifier

(name) and should use the following format:

<block name>:
declare

<declaration>;
<declaration>;

begin -- <block name>

<statement>;
<statement>;

exception
when <exception> ->

<statement>;
<statement>;

3-44

end <block name>;

3.6.1.3.5 Subprograms. A subprogram is a program unit whose execution is
invoked by a subprogram call. There are two forms of subprograms: procedures
and functions.

3.6.1.3.5.1 Subprogram Names. Except as indicated below, a subprogram name
should be an imperative verb phrase describing its action:

OBTAIN NEXT TOKEN
INCREMENTLINECOUNTER
CREATENEWGROUP

Non-BOOLEAN valued function names may also be noun phrases:

TOPOFSTACK
X_COMPONENT
SUCCESSOR
SENSORREADING

BOOLEAN valued functions should have predicate-clause names:

STACKISEMPTY
LASTITEM
DEVICENOTREADY

File names must always accurately represent the program unit name to the
extent allowable by the constraints of the operating system.

3.6.1.3.5.2 Subprogram Header. Each subprogram body or stub should be
preceded by a header comment block containing the documenting information as
described and shown in example form in figure 3-3.

3.6.1.3.5.3 Subprogram Declarations. Procedure declarations should have one
of the following formats:

procedure <procedure name> (<parameter spec>);
--

procedure <procedure name> (<parameter spec>;
<parameter spec>);

Each <parameter spec> should be formatted like an object declaration (see
subparagraph 3.6.1.3.2.4).

Function declarations should have one of the following formats:

function <function name> (<parameter spec>) return <type mark>;
...

function <function name> (<parameter spec>;
<parameter spec>) return <type mark>;

3-45

-- * Unit Name : SOMEPROCESS (SPEC, BODY, STUB, or SUBUNIT) *

- * Author Joe Analyst *

-- * Create Date: 03/17/88 *
.. * *

-- * Revision History: *

-- * 05/30/88 DH <Summarize exactly what changes were done *

-- * and why>. *
-_ * *

-- * Purpose: *
-- * Explain what this unit does to support the CSCI. *

-. * *

-- * Function: *
-- * Explain how this unit achieves its purpose (e.g., algorithms, *

-- * structures, objects, types, tasks). *
._ * *

-- * External Units Accessed: *
* TEXTIO : "with"ed in to allow alphanumeric I/O. *

* SOMEFUNCTION: called to perform calculations. *

-- * GKSLIB : referred to for GKS-type I/O. *

* Exceptions:
* DATAERROR: handles variable type inconsistencies. *

- * CONSTRPINTERROR: handles range constraint errors. *
°_ * *

°- * Hardware Dependencies: *

-- * List the access type, purpose, and justification for any, *

-- * such as: registers, memory, bulk storage, ports, and machine *

- * code. *
°_ * *

-- * Compiler Dependencies: *

- * List any special requirements and their justification, such *

* as: special pragmas, optional implementation, and specific *

-- * compilers. *

Figure 3-3. Ada Language Header Comment Block

3-46

Each <parameter spec> should be formatted like an object declaration (see
subparagraph 3.6.1.3.2.4).

Parameter mode indications should always be used in procedure specifications.
In a function specification, mode indications should either be used for all of
the parameters or none.

3.6.1.3.5.4 Subprogram Bodies and Stubs. Subprogram bodies should have the
following format:

separate (<parent name>)

<subprogram specification> is

-- <header comment block>
<declaration>;

<declaration>;

begin -- <subprogram name>
<statement>;
<statement>;

exception

when <exceptions> ->

<statement>;

end <subprogram name>;

The <subprogram specification> should be formatted as in a subprogram
declaration (see subparagraph 3.6.1.3.5.3) and the <header comment block> is
shown in figure 3-3.

Subprogram stubs should have the following format:

<subprogram specification> is separate;

where the <subprogram specification> is formatted as in a subprogram
declaration (see subparagraph 3.6.1.3.5.3).

3.6.1.3.5.5 Named Parameter Association. Named parameter associetion should
generally be used for procedure calls of more than a single parameter.
Positional parameters are generally preferred for function calls. Named and

positional parameter associations should LLut be mixed in a single subprogram

call.

Named parameter associations should appear one to a line with formal
parameters, "->" symbols and actual parameters aligned. For example:

OBTAINNEXTTOKEN
(FILE -> CURRENT SOURCE_FILE,

POSITION -> CURRENTCOLUMN,

TOKEN -> NEXTTOKEN);

3-47

3.6.1.3.6 Packages. Packages allow the specification of groups of logically
related entities. In their simplest form, packages specify pools of common
object and type declarations. More gcnerally, packagcs can be used to specify
groups of related entities including subprograms that can be called from
outside the package, while their inner workings remain concealed and protected
from outside users.

3.6.1.3.6.1 Package Names. A package name should be a noun phrase describing
the abstract entity modeled by the package, or simply whatever is being
packaged:

STACKHANDLER
VEHICLECONTROLLER
TERMINALOPERATIONS
PARSERTYPES
UTILITIESPACKAGE

File names must always accurately represent the program unit name to the
extent allowable by the constraints of the operating system.

3.6.1.3.6.2 Package Header. Each package specification, body, or stub should
be preceded by a header comment block as shown in figure 3-3.

3.6.1.3.6.3 Package Specifications. Package specifications should have the
following format:

package <package name> is

-- <header comment block>
<declaration>;
<declaration>;

private
<declaration>;
<declaration>;

end <package name>;

The <header comment block> is shown in figure 3-3.

In a declarative part, all package specifications should appear before any
package or task bodies.

3.6.1.3.6.4 Package Bodies and Stubs. Package bodies should have the
following format:

separate (<parent name>)
package body <package name> is

-- <header comment block>

3-48

<declaration>;

<declaration>;

begin -- <package name>

<statement>;

<statement>;
exception
when <exceptions> ->

<statement>;

end <package name>;

The <header comment block> is shown in figure 3-3.

Package stubs should have the following format:

package body <package name> is separate;

3.6.1.3.7 Tasks. Tasks are entities in Ada whose executions proceed in
parallel. Each task can be considered to be executed by a logical processor
of its own. Different tasks proceed independently, except at points where
they synchronize.

3.6.1.3.7.1 Task and Entry Names. A task name should be a noun phrase

describing the task function or abstract entity modeled by the task. For
example:

SENSORINTERFACE
STATUSMONITOR

EVENTHANDLER
MESSAGEBUFFER

Entry names should follow the same guidelines as for procedure names (see
subparagraph 3.6.1.3.5.3).

3.6.1.3.7.2 Task and Entry Headers. Each task or task type specification or
body and each entry specification should be preceded by a header comment block

as shown in figure 3-3.

3.6.1.3.7.3 Task Specifications. Task specifications should have the

following format:

task <task name> is

-- <header comment block>

<declaration>;

<declaration>;

end <task name>;

S3-49

The <header comment block> is shown in figure 3-3 and a task type
specification should be formatted the same as a task specification.

Entry declarations should have the following format:

entry <entry name> (<family range>)

(<parameter specification>;

<parameter specification>);

-- <header comment block>

Each <parameter specification> should be formatted like an object declaration
(see subparagraph 3.6.1.3.2.4). The <header comment block> is shown in figure
3-3.

Parameter mode indications should always be used in entry declarations and in
a declarative part, all task specifications should appear before any task or
package bodies.

3.6.1.3.7.4 Task Bodies and Stubs. Task bodies should have the following
format:

separate (<parent>)

task body <task name> is

-- <header comment block>
<declaration>;

<declaration>; 4

begin -- <task name>

<statement>;
<statement>;

exception
when <exceptions> ->

<statement>;

end <task name>;

The <header comment block> is shown in figure 3-3.

Task stubs should have the following format:

task body <task name> is separate;

3.6.1.3.7.5 ACCEPT Statements. Parameter mode indications should always be
used in "Accept" statements and they should have one of the following formats:

accept <entry name> (<entry index>);
................................-..

3-50

accept <entry name> (<entry index>)
(<parameter specification>;
<parameter specification>);

do
<statement>;
<statement>;

end <entry name>;

Each <parameter specification> should be formatted like an object declaration
(see subparagraph 3.6.1.3.2.4).

3.6.1.3.7.6 SELECT Statements. Selective wait statements should have the
following format:

select
<statement>;
<statement>;

or
<statement>;
<statement>;

or
when <condition> ->

<statement>;
<statement>;

else
<statement>;
<statement>;

end select;

This format is consistent with the indentation style of other statements. In
addition, the added level of indentation especially highlights guarded
sections of code.

Conditional and timed entry calls should have the following format:

select
<entry call>;
<statement>;

else
<statement>;
<statement>;

end select;

3.6.1.3.7.7 Pragma Priority. The priority pragma should appear in task
specifications before any entry declarations, and in the main program before
any declarations.

3.6.1.3.8 Compilation Units. Each compilation unit should be in a separate
file, except possibly in the case of a generic procedure specification and its
body.

3-51

3.6.1.3.9 Exception Declarations. Exception declarations should be formatted
like object declarations (see subparagraph 3.6.1.3.2.4).

3.6.1.3.10 Generic Units. A generic unit is a program unit that is either a
generic subprogram or a generic package. A generic unit is a "template,"
which is parameterized or not, and from which corresponding (non-generic)
subprograms or packages can be obtained. The resulting program units are said
to be "instances" of the original generic unit.

3.6.1.3.10.1 Generic Declarations. Generic declarations should have the

following format:

generic

<declaration>;

<declaration>;
<program unit specification>;

Each <declaration> should be formatted like its non-formal counterpart (see
subparagraphs 3.6.1.3.2.3 and 3.6.1.3.2.4), except for formal subprograms
which should be formatted as a generic formal parameter subprogram shown
below. The <program unit specification> should be formatted as for
non-generic units (see subparagraphs 3.6.1.3.5.3 and 3.6.1.3.6.2).

A generic formal parameter subprogram declaration should have one of the
following formats:

with <subprogram specification>;
with <subprogram specification> is ---

with <subprogram specification> is <d; n
--

with <subprogram specification> is <default name>;

The <subprogram specification> should be formatted as for a subprogram
declaration (see subparagraph 3.6.1.3.5.3).

A generic declaration should be preceded by the appropriate unit header block
(see subparagraphs 3.6.1.3.5.2 and 3.6.1.3.6.2).

3.6.1.3.10.2 Generic Instantiations. Generic instantiations should have one
of the following formats:

<unit header> is new <generic name> (<generic arg>,<generic arg>);
--..------.-.--

<unit header> is new <generic name> (<generic parm -> <generic arg>,
<generic parm -> <generic arg>);

Note that in the second form, the arrows ("->") should be kept aligned.

3.6.1.3.11 Representation Clauses. Representation clauses should be placed
near to the objects they affect.

3-52

3.6.2 C Style Specifications. The following subparagraphs present the
structure, coding, and format guidelines to be utilized in C language
development for all projects comprising the JNGG Graphics Program.

3.6.2.1 Structure Guidelines. The following subparagraphs present and
discuss general guidelines to be used in the structure utilized for C language
programming.

3.6.2.1.1 Functional Cohesion. A function or macro function should perform a
single, conceptual action.

3.6.2.1.2 File Utilization. Files allow the specification of groups of
logically related entities. In their simplest form, files specify pools of
common object and type declarations. More generally, files can be used to
specify groups of related entities including functions that can be called from
outside the file, while their inner workings remain concealed and protected
from outside users.

In order for a file to be truly useful, it must perform one or more of the
following purposes which are listed below in order of decreasing desirability:

a. Model an abstract entity (or data type) appropriate to the domain of
a problem. This is the strongest use of files for structuring a
program. It corresponds to the requirement of functional cohesion
(see subparagraph 3.6.2.1.1) and contributes to the goal of making
the structure of a program reflect the structure of its problem

* domain.

b. Collect related type and object declarations which are used together
(this kind of file should be used only to provide a common set of
declarations for two or more library units). Further, it is better
to minimize the declaration of variables in these files. Overuse of
files of variables results in a FORTRAN COMMON block style program
decomposition which defeats the abstraction and information hiding
properties of files (see subparagraph 3.6.2.2.6.2).

c. Group together program units for essential configuration control or
visibility reasons. This type of file should be used sparingly since
it gives no additional information to a human reader on the structure
of the program but might, for example, be used to divide a large
program at the top level into subsystems to be developed by separate
teams. However, it would be best if these subsystem files fulfilled
at least one of the other two purposes in addition to this one.

Files should NOT be designed based on the procedural structure of the code
which calls them. For example, a group of functions should not be packaged
simply because they are all called at system initialization, or because they
are always called in a certain sequence. Such a file is closely coupled to
the context in which it is used and is not very understandable, reusable, or
maintainable as a unit.

3-53

A logical hierarchy of files should be used to reflect or model levels of
abstraction.

3.6.2.1.3 Scope of Visibility. Structural guidelines for the scope of
identifiers should not extend further than necessary. This promotes
information hiding and reduces coupling. The C language has four basic scope
rules to bear in mind:

a. External variables: for variables declared outside a function, the
scope is from the end of the declaration to the end of the file.
External declarations must be placed at the front of the file.

b. Local variables: for variables declared inside a function, the scope
is the rest of the block--from the end of the declaration to the end
of the block. This limited scope of local variables means that a
programmer does not need to worry about inadvertently using a namc
that has been used inside some other function.

c. Visibility to the linker: external variables declared as static will
not be published to the linker; they will be known onlv within their
source file. Other external variables will be published to the
linker and linked together across source files. For an external
variable to be known in a source file other than the one containing
its definition, the second source file must contain an extern
declaration for the variable.

d. Function names: the names of functions must explicity note whether or
not the function is to be external or static. Thus, it is mandatory
that the keywords extern or static be added to function declarations.

3.6.2.1.4 Program Structure and Compilation Issues. The overall structure of
programs and the compilation issues relevant to style guidelines are described
in this subparagraph.

3.6.2.1.4.1 Program Units. The compilation units of a program belong to a
"program library." The following structural guidelines apply:

a. Library units should be used to allow configuration control of the
high-level functional subsystems of a programt and for reusable
program units.

b. Library units in a file structure are preferable to library units
which are functions. Library units providing services to the main

program should always be files.

3.6.2.1.4.2 INCLUDE Clauses. A context clause is used to specify the library
units whose names are needed within a compilation unit. No unit should have
an "include" clause for a unit it does not need to see directly.

3-54

3.6.2.1.4.3 Program Unit Dependencies. The following guidelines pertinent to
program unit dependencies should be adhered to:

a. Excessive dependencies between compilation units should be avoided.

b. It is preferable to limit program unit dependencies to a tree
structure whenever possible.

3.6.2.1.5 Implementation-Dependent Features. Implementation-dependent
features should, if possible, be hidden inside files which present
implementation-independent interfaces to programmers.

3.6.2.1.6 Use of Prototypes. It is required that each C function in a file
have a corresponding prototype function declaration in its accompanying header
file.

3.6.2.2 Coding Guidelines. The following subparagraphs define and discuss
guidelines to be used in C source code generation. These guidelines are
grouped into the following topics: declarations and types, preprocessing
guidelines, guidelines for scalars, arrays, pointers, structures, dynamic
storage allocation, and opening named files.

3.6.2.2.1 Declarations and Types. The following subparagraphs provide coding
guidelines relevant to object declarations, constants, enumeration types, and
floating-point types.

3.6.2.2.1.1 Constants. C language constants must utilize the #define
construct to make them easier to read and maintain. Thus, a declared object
is a constant if named through use of #define and an explicit initialization
is provided.

An object should be declared constant if its value is intended not to change.
Declaring an object to be constant clearly signals both the human reader and
the compiler the intention that its value will not change. This not only
increases readability, it also increases reliability.

#define LINES PER PAGE 66 /* integer constant */
#define PI 3.14159 /* numeric constant */
#define LC A 'a' /* character constant */
1define MESSAGE "Improper input\n" /* string constant */

3.6.2.2.1.2 Enumeration Types. Recent C compilers provide enumeration types,
which allow declarations like this:

enum stopLight (red, yellow, green)

This establishes enum stopLight as a type which can be used in further
declarations, such as:

03-55

enum stopLight mainStreet, frontStreet;

And the enumeration constants (red, yellow, and green) become symbolic names
for the integer constants 0, 1, and 2. Each of the enumeration constants can

be explicitly initialized, as in:

enum stopLight (red - 'r', yellow - 'y', green = 'g');

An enumeration variable is treated just like an int variable, except that its
actual storage size might be optimized according to the range of the
enumeration zonstants.

3.6.2.2.1.3 Floating-Point Types. The exact form of the storage of floating-

point numbers varies with the machine, but all standard C compilers offer two
types of floating-point numbers:

float which holds at least 6 decimal digits; and

double which holds at iea.t 15 ac:nmai digiLs.

Since machines differ in their floating-point mechanisms, answers may be
slightly different on different machines. In any case, on any machine,
answers are only approximate--accurate only to a limited number of decimal
places. Comparing two floating-point results for exact equality is generally
risky. Adding a long series of numbers can create a noticeable round-off
error; the more numbers in the series, the larger the error. Subtracting two
nearly equal numbers can also create a round-off error. A small round-off
error can also creep in when decimal input is converted to internal binary
format or vice versa.

These considerations suggest two cautionary notes. First, before attempting

serious scientific or engineering computations with long sequences of
floating-point operations, first consult a text on numerical analysis.
Second, if floating-point numbers are used for dollars and cents computations,

be aware that a printed result could be off by a penny.

A number of useful functions are available in the C library for floating-point
computation. Some of the more common functions are:

ceil(x) smallest integer not less than x

cos(x) cosine of x
exp(x) exponential function of x
floor(x) largest integer not greater than x

log(x) natural log of x

loglO(x) base-10 log of x
pow(x, y) raise x to the power y

sin(x) sine of x

sqrt(x) square root of x
tan(x) tangent of x

3-56

3.6.2.2.1.4 Object Declarations. Each object declaration should declare only
one object even though the objects may be of the same type. Where possible,
objects should always be initialized by their declaration, rather than in
later code. This practice enhances the readability and reliability of the
code:

int keystroke - 25;
int numberltems - 2;
char messageCode(71 - "DM0745";

3.6.2.2.2 Preprocessing Guidelines. The "definition" capabilities of C
provide techniques for writing programs that are more portable, more readable,
and easier to modify reliably. This subparagraph presents a number of
guidelines related to definitions and header files that aid in building
reliable C programs.

3.6.2.2.2.1 Defined Constants. The following subparagraphs dis..uss various
guidelines and rules to be considered when using defined constalts--both those
provided by standard C header files and those defined during software
development.

3.6.2.2.2.1.1 Definitions Containing Operators. Any macro definitio-i
containing operators needs parentheses around the entire definition. Each
appearance of a macro argumcnt in the definition also needs to be
parenthesized if an embedded operator in the argument could cause a precedence
problem. For example:

#define EOF (-1) /* Good */
#define EOF -1 /* Bad */

The first definition causes any subsequent appearance of the name EOF to be
replaced by the characters (-l). Since the definition contains an operator
(the "minus"), it is enclosed in parentheses. The second definition, however,
could possibly generate a syntactically correct, but unintended result. If a
programmer erroneously coded:

if (c EOF) /* Should be (c ! EOF) */

The compiler would interpret it as:

if (c - 1) /* Syntactically correct, but unintended */

3.6.2.2.2.1.2 Need for Environmental Capability. Reliable modification of
defined constants requires an environmental capability. There must be a means
for ensuring that all files comprising a program have been compiled using the
same set of headers (e.g., the Unix MAKE command).

Although readability is the main reason for creating defined constants,
modifiability is a close second. The name BUFFER-SIZE tells the reader that

3-57

it is the "buffer size" used in efficient I/O transfers (e.g. #define
BUFFER SIZE 512). However, the defined constant also shows how the program
can be modified for a different value. Thus, on systems where 1024 is a
better value for the size of disk I/O transfer, the standard header STDIO.H
could specify the value 1024 for BUFFER SIZE.

3.6.2.2.2.1.3 Commenting Modifiability Limitations. If there are limitations
on the modifiability of a defined constant, indicate the limitations with a
comment:

#define EOF (-l) /* DO NOT MODIFY: ctype.h expects -1 value */

Another application of this guideline is the explicit indication of minimum
and maximum value':

#define NBUFS 5 /* min 2, max 30 */

3.6.2.2.2.1.4 Relationships Between Definitions. If one definition affects
another, embody the relationship in the definition. Do not use two separate
definitions. For example:

1define VALUE 5
#define VALUE_2 (VALU + 2)

The previous pair of definitions follows the rule by showing tne relationship,
whereas:

Ii define VALUE 5
#defiae VALUE_2 7 /* MISLEADING -- no indication of relationship */

does not. In the former case, the program could be modified reliably by
changing the definition of VALUE. In the latter example, a guess would be

required to figure out that VALUE_2 should probably be changed to equal VALUE
plus two.

3.6.2.2.2.1.5 Use of Expressions. if a value is given for a defined
constant, don't defeat its modifiability by assuming its value in expressions.
Just giving the constant a nam2 is not enough to ensure modifiability.

The programmer must always use the name and remain cognizant of the
possibility that the value could change. For example:

Pdefine BUFFER SIZE 512

nblocks - nbytes >> 9; /* Used in multiple places in the program */

3-58

Here, the programmer makes the assumption that "everyone knows" that
BUFFERSIZE equals 512, and right-shifting 9 bits is the same (for positive
numbers) as dividing by 512. However, if BUFFERSIZE changes to 1024 on
another system, modifications to the butter size used throughout the program
would be rather difficult. Instead, the programmer should have used:

nblocks - nbytes / BUFFERSIZE; /* Easily maintainable expression */

3.6.2.2.2.1.6 Use of Standardized Environment-Dependent Limits. Use LIMITS.H
for environment-dependent values. In this manner, system dependencies are
limited to the appropriate header file and the numbers of previously required
definitions in the source code is much less.

3.6.2.2.2.2 Defined Types. Use a consistent set of project-wide defined
types. For the purpose of engineering reliable software, it is crucial that
more precise definitions of data types (than those basic types supplied by C)
are made. Special semantic rules apply for some of these defined types and
they will be described below. In particular, there are five defined types
that would be useful to most applications:

bits /* an unsigned short integer used for bitwise operations */
ushort /* an unsigned short integer used for arithmetic */
metachar /* a short integer holding a char value or EOF */
bool /* an integer to be tested for zero or non-zero */
void /* the "return type" for a function that returns no value */

These types may be defined using the typedef statement. An example appears
below:

typedef unsigned short ushort, bits;
typedef short metachar;
typedef int bool;
typedef int void; /* delete if compiler supports void */

Although #define could also be used for this purpose, an important difference
between #define and typedef is that #define replaces the name with its
definition during preprocessing, whereas typedef is handled by the C syntax
analysis. Thus, a defined types created via typedef cannot be "undefined" or
re-defined, so its usage is more reliable. Also, if the name is mistakenly
used as a variable name, the diagnostics are more intelligible.

In terms of portability, the symbols ushort and void are important. Not all
compilers currently accept the unsigned short type, but most that do not
accepc it are targeted for small machines where ushort can simply be
translated into unsigned int.

Regarding void, any function that does not return a value should be indicated
as being a void funrtion. Recent C compilers implement void as a keyword. It
the compiler used for the project supports void, do not try to typedef a

definition for it. Instead, remove any such definitions from the appropriate
header files. If the compiler used does not support void, it should be
defined as int.

3.6.2.2.2.3 Standard Headers. Headers are used for several purposes:
creating defined constants, creating defined types, and creating prototypes.
Separate headers should be created for each related group of functions, along
with any special symbols that are useful with those functions.

3.6.2.2.2.3.1 Function Declarations. Declare all functions in header files
before they are used. The returned type of each function is thus declared so
as to eliminate any possible problems with the compiler misinterpreting the
function's returned type. The types of the function parameters should also be
specified in comments.

3.6.2.2.2.3.2 Local iiaders. Create a portability definitions header (e.g.,
portdefs.h) local to the project. It should contain various defined types,
defined constants, and macros that will be important in producing portable
code. This header should be included in all programs to ensure that all
project programs are compiled with "portability definitions."

3.6.2.2.2.4 Macro Functions. A macro with parameters will be referred to as
a macro function. Macro functions may be used only with contractor Project
Manager approval (final approval given by the Government Project Officer). An
example of a macro function is:

#define ABS(x) (((x) < U) ? -(x) : (x))

Since each argument can contain operators, each parameter is parenthesized to

avoid precedence conflicts. Furthermore, since the entire result is an
expression usable with other operators, the entire definition is also
parenthesized (refer to subparagraph 3.6.2.2.2.1.1).

There are two types of macro functions: safe and unsafe. A safe macro
function evaluates each parameter only once in the code expansion, whereas an
unsafe macro function is one which evaluates a parameter more than once in the
code expansion. By this definition, the preceding example is an unsafe macro
function.

Thus, a critical issue of concern when writing macro functions are the side-
effects on macro arguments. The following example would increment <n> twice:

ABS(++n) /* BUG! */

Therefore, the documentation for such macros must warn about putting side-
effects on the invocation, and the responsibility is upon the programmer using
the macro (refer to subparagraph 3.6.2.2.2.1.3).

3-60

3.6.2.2.2.4.1 Naming of Unsafe Macros. Use uppercase names for unsafe macro
functions to emphasize the restrictions on their usage. For safe macros,
there are some advantages to using lowercase names. Each safe macro could be
replaced by an actual function call, and at different times during project
development, one might want the macro version or the function version.

3.6.2.2.2.4.2 Invoking Unsafe Macros. Never invoke an unsafe macro function
with arguments containing assignment operations, increment/decrement
operations, or function calls.

3.6.2.2.2.4.3 Safe Macro Usage. Use safe macro functions when-ver possible.
The usage of unsafe macro functions requires completion of an Approval Form
and the approval of Government management.

3.6.2.2.2.5 Undefining. In general, the redefinition of symbols is quite
unreliable. Each symbol should have an invariant meaning, so that each
instance of the symbol denotes the same thing.

Usage of the flundef statement requires approval by the contractor Project
Manager (final approval by the Government Project Officer).

3.6.2.2.2.6 Conditional Compilation. The preprocessor provides for
conditional compilation, whereby some lines of code may be selectively
excluded from compilation depending upon the outcome of some test usiing some
combination of appropriate commands (e.g., #if, #else, #ifdef, #ifndef, #elif,
and #if defined).

S 3.6.2.2.2.6.1 Commenting-Out Code. Sometimes one needs to "comment out"
several lines oT code. Most compilers (and ANSI C) do not test comments, so
ordinary comments cannot be used. The following construct will delete the
enclosed lines even if they contain other #if constructs:

#if 0
/* ...code to be commented out...

J/endif

3.6.2.2.2.6.2 Usage of an Inclusion Sandwich. All header files will be
enclosed in an "inclusion sandwich." Essentially, each header #define's a
symbol ,hat means "I have already been includzd." In this way, the first time
a header file is #include'd, all of its contents will be included. Subsequent
attempts to #include the file will be ignored. The appropriate structure to
be used is:

#ifndef HEADER H
#define HEADER H

...contents of the header...

#endif

5 3-61

3.6.2.2.3 Guidelines for Scalars. This subparagraph addresses the reliable
use of scalars--an object having floating, integer, or pointer type.

3.6.2.2.3.1 The Math Library. The following subparagraphs provide guidelines
and reliability concepts to be considered when using the C-provided math
library--<math.h>.

3.6.2.2.3.1.1 Floating-Point to Integer Conversions. Vhen a positive
floating-point value is converted to an integer value, the fractional digits
are truncated. However, when a negative floating-point value is converted,
the truncation may be toward or away from zero, depending on the
implementation.

Therefore, when exactness counts in converting floating-point to integer, the
value being converted must be non-negative.

3.6.2.2.3.1.2 Testing for Errors. When testing for errors being returned,
the global variable errno should be used. This variable is set to a non-zero
value by any of the math functions that encounters an error. Thus, setting
errno to zero prior to a computation, and testing it afterwards, will reveal
whether any library errors were reported during the computation-

errno - 0;
<perform computation>
if (errno !- 0)
<handle the error situation: report, compute differently, etc.>

else
<computation was error-free>

3.6.2.2.3.2 Character Tests. The facilities of the header file <ctype.h>
must be used for character tests and uppercase and lowercase conversions.
These functions arc the most portable way of testing and converting
characters.

3.6.2.2.3.3 Boolean Data. All test conditions must be clearly "Boolean"
expressions. Any expression whose top-level operators are relational and
logical is obviously a "Boolean" expression, but what about Boolean variables?
From the compiler's point of view, any value other than zero or one might be
assumed to be non-Boolean.

From the human reader's point of view, the program will be easier to
understand if Boolean variables are clearly indicated as such. The following
type scheme provides a defined type for Boolean variables:

bool designates an int-sized Boolean variable

Therefore, always ensure that Boolean variables are assigned the values zero
and one. This means that the type bool is always adequate.

3-62

Also, ensure that each test condition is Boolean, involving only the Boolean
type or relational and logical operators.

3.6.2.2.3.4 Enumeration Types. If an un-initialized enumeration constant
follows one which is initialized, its value is one greater than the previous
constant. Therefore, an enumeration's constants must all be initialized, or
else none of them should be initialized.

Furthermore, although enumeration variables are treated much like int
variables, write programs as if enumeration variables could receive no values
other than the associated enumeration constants. Treat the enumeration types
as if they were unique types, not for any arithmetic int usages. Convert
between enumeration variables and integer values only by use of an explicit
cast.

3.6.2.2.3.5 Range-Checking. Failure to attend to proper ranges of variables
can lead to interesting reliability problems. The following subparagraphs
describe methods to be used in developed code to assure proper ranges are
checked.

3.6.2.2.3.5.1 Modifying Loop Control Variables. The value of loop control
variables may not be modified by a program.

3.6.2.2.3.5.2 Inclusion of "One-Too-Far" Values. In C language programs
developed for the JNGG Graphics Program, the "one-too-far" value must be
considered as part of the range of a variable if they are needed for loop

* terminations or other testing purposes.

For example, consider a variable named monthNo which is a subscript into an
array of monthly information. Assume further that its range is 0 to 11. A
common usage of such a variable appears below:

for (mon'hNo - 0; monthNo < 12; ++monthNo)
<someprocess> arraylmonthNo];

The for loop always involves a "one-too-far" value at the end of thp loop;
monthNo must always be incremented to 12 in order for the loop test
(monthNo < 12) to terminate the loop.

3.6.2.2.3.5.3 Size T Type Usage. The discussion of ranges would not be
complete without considering the sizes of objects and the ranges of
subscripts. C is moving toward the ability to handle objects whose size
cannot be represented in an unsigned int. ANSI C envisions that some
environments will need to use unsigned long to represent the sizeof anything.
Several of the standard headers will define a type named size t, which will be
either unsigned int or unsigned long, according to the environment.

3-63

Therefore, functicn parameters accepting the size of an arbitrarily large

object must be declared with the size-t type. The following example usage

will clarify the usage of size t:

reverse:
/* reverse - reverse the order of a string */

11include "local.h"
void reverse(s)

char s[];

char t;

sizet i, j;

if ((j - strlen(s)) - 0)
return;

for (i - 0, j - j - 1; i < j; ++i, --j)
SWAP(s[i], s[j], t);

3.6.2.2.3.6 Signed and Unsigned Arithmetic. Signed and unsigned arithmetic
has significantly different properties in C. The following subparagraphs
discuss how best to support portability and maiittainability in C code when

utilizing such operations.

3.6.2.2.3.6.1 Subtraction Between Unsigned Integers. When two unsigned

integers are subtracted, convert the result using either (unsigned) or
UITOI. Ensuring that this is done in our code will clarify the possible

duality of interpretation that such operations will normally exhibit.

3.6.2.2.3.6.2 Usage of the Integer Modulo Macro (IMOD). The sign of the

remainder operator (%) is implementation-dependent when the operands are of
different signs. This will usually cause a portability problem when the
programmer has assumed that i % J is always positive.

To provide a true (never negative) modulo operation, an IMOD ("integer
modulo") macro from the portdefs.h header file should be used:

/* modulo macro giving non-negative result */

#define IMOD(i, j) (((i) % (j)) < 0 ? ((i) % (j)) + (j) • ((i) % (j)))
/* if i % j is never negative, replace with the following line: */
/* #define IMOD(i. i) ((i) % (j)) */

3.6.2.2.3.7 Overflow. In signed integer arithmetic, always assume that
overflow is illegal, may be detected (hence should never be programmed), and

cannot be trapped or ignored. In doing so, the C code will not be subject to

intermediate overflow problems--an operation that produces a result that is
too large for the intermediate result.

3-64

3.6.2.2.3.8 Data Properties. The most basic distinction when talking about
data properties is the distinction between an undefined value (e.g.,
"garbage," or un-initialized), and a defined value. The following example
shows an "undefined" error arising from forgetting to initialize a counter:

long sum;
int i;

for (i - 0; i < N; ++i)

sum += a[ij; error - sum not initialized

In C, automatic variables are undefined until they are initialized and static
variables are initialized by default, so they are initially defined. Thus, a
variable can acquire an undefined value as the result of an invalid operation:

n - m / 0;

causes <n> to become undefined, possibly terminating execution as well.

Therefore, the importance of documenting the defining properties of declared
names in a comment on the declaration becomes clear. Besides stating desired
properties on the declaration of variables, the programmer can also document
properties of function-returned values:

bool isEmpty(; /* is node empty?: bool */

All declared names must follow the above convention which provides a comment
with a colon followed by a property name meaning "must have this property."

3.6.2.2.4 Arrays. In C, arrays are used for storing character strings as
well as for their more universal uses. As a result, the assurance of
reliability for the properties of an array become more complex than in
languages where strings are objects in their own right.

3.6.2.2.4.1 Array Data. The following subparagraphs describe the reliability
concerns pertinent to the properties of array data as well as the guidelines
that will help ensure that programming pitfalls are avoided.

3.6.2.2.4.1.1 Storage Class Precedence. In C, the declaration of one
variable actually consists of five components:

static char line[10] - "msg";

where: static storage class (optional)
char type specifier
line[IC] declarator
- "msg" initialization (optional)

semicolon (statement delimiter)

3-65

Strictly speaking, the storage class and the type specifier can appear in any
order, but declarations are clearer in a conventional order. Thus, storage
class (if any) should always precede the type specifier.

3.6.2.2.4.1.2 Optional Initialization of Variables. If a variable has an
initialization, its declaration must have a source line to itself. This is
due to the fact that several variables can be declared in a single
declaration:

static char lineA[10], lineB[10];

The previous line is equivalent in every way to two separate declarations:

static char lineA[l10];
static char lineB[lO];

A common error is often made where the programmer assumez that the following
initialization applies to both lineA and lineB:

static char lineA[lO], lineB[lO] = "msg"; <-- misleading

3.6.2.2.4.1.3 Array Properties. Document the defining property of a data
object with a comment on its declaration. Ensure that this defining property
remains invariant (unchanging) as much as possible throughout the computation,
and document any exceptions.

An array is either complete (all scalar elements contained within the array
are defined) or incomplete (one or more elements are not defined). An array
can become complete either by assignment to all its elements, or by an
initializer on its declaration. Thus, all arrays should be made complete
before the array is used in order to make the program easier to write
correctly and to understand.

Some arrays have other properties that are more important than "complete" or
"incomplete." A string, for example, requires defined characters only up to a
nul (i.e., '/0') terminator. The characters after the nul terminator can be
total garbage and the array still has its defining property satisfied--being a
string. Therefore, if an array's defining property can be true even if not
all elements are defined, indicate that property on the array's declaration,
thus:

char s[10]; /* : string */

Without this indication, it is assumed that the array must be complete (all
elements defined) before its value is used.

3.6.2.2.4.2 Sorting an Array. When sorting arrays, use exec'itable assertions
whenever they are simpler than the code being protected and when the time to
execute the assertions is not much greater than the time required to execute

3-66

the code. They are much more reliable than simple comments indicating the
intended invariant conditions of the sort process.

3.6.2.2.5 Pointers. Pointerq are both powerful and dangerous in C. Programs
can perform arbitrary manipulations of their data space in C and that aspect
is essential for many of the system-level uses of C. However, a style of
programming oriented toward portability and reliability must place
restrictions on the uses of pointers.

3.6.2.2.5.1 Declaration of Pointers. In each pointer assignment, the right-
hand side value must have exactly the same ("converted") pointer type as the
left-hand side. In the assignment:

char s[10], *p;

p = s;

the "declared" type of s is char (10] and the "converted" type is char *, so
the assignment is proper. By contrast, here is an improper assignment:

char s[10];

int *pi;

pi - S; <-- improper mixed-type pointer assignment

3.6.2.2.5.2 Pointers to Scalars. A NULL pointer is one which contains the
unique "null" value. A pointer becomes NULL when the integer zero is assigned
to it. A NULL pointer always compares equal to integer zero. An undefined
pointer is one that is not NULL, and yet is not pointing to an object of a
compatible type (e.g., "garbage," un-initialized). Thus a defined pointer is
either pointing to valid storage, or else is NULL. Thus, a pointer that is
non-NULL is implied to be defined and points to valid storage. The importance
of these concepts can be illustrated by considering various errors in calling
ShortOrder.

The following example shows an undefined pointer error:

short *psl, *ps2;

ShortOrder(psl, ps2);

Without initializations or assignments, the values of psi and ps2 are
undefined. In effect, ShortOrder has becn asked to rearrange the contents of
two random memory locations!

The following example 5hows a NULL pointer error:

short *psi - NULL;

short *ps2 - NULL;

3-67

ShortOrder(psl, ps2);

Variables local to ShortOrder would receive the NULL value from the calling
function and, since NULL does not point to any valid object, most compilers
will attempt to access memory location zero, producing unpredictable results.

Therefore, the default requirement for pointer parameters is that they must
point to storage that is entirely defined. Whenever a pointer parameter can
accept something else, this should be explicitly stated on that parameter's
declaration comment. This rule may or may not apply to a given project since
the Unix operating system normally enforces this anyway.

3.6.2.2.5.3 Dangling Pointers. A pointer can become undefined if the object
that it is pointing to should "disappear" during the lifetime of the pointer.
An example appears below':

dangling.c:
/* dangling - example of dangling pointer */

#include "local.h"
static short *pi - NULL;

main()

void fl();

/t pi -> NULL initially */
fl(); /* pi -> undefined suddenly! */

void fl(i

short i;

pi - &i; /* pi -> complete, momentarily */

The return from function fl above causes the pointer pi to become "undefined."
In other words, a dang'.ing pointer.

Therefore, a function in which the address of an automatic variable is
a.signed to a non-automatic pointer must contain a comment to that effect. In
any function with such a comment, each return from the function is an event
requiring verification that no dangling pointers are left.

3.6.2.2.6 Structures. Structures are used for grouping a collection of
objects into a single aggregate object. They can also be subdivided into the
level of machine bits, using bit fields. Unions are syntactically very
similar to structures, allowing the same memory to be used in different ways.

3-68

3.6.2.2.6.1 Records. The record structure is one of the oldest uses of a
structure in programming. The following example collects infornation about a
specific part in an assembly:

struct part

char partNo[14]; /* part number: string */
short leadTime; /* lead time (in weeks): (0:99) */
char unitMeas[6]; /* unit of measure: string ("each","lb","box") */
float unitCost; /* cost for one unit meas: (0.00:9999.99) */
short costQty; /* quantity required for price: (0:9999) */
1;

In a typical environment where short requires two bytes and float requires
four bytes, the memory layout of a struct part might look like this:

Member Offset Storage

partNo 0

leadTime 14

unitMeas 16

unitCost 22

costQty 26 ___

Each data type has its own alignment requirement, a requirement (imposed by
the central processor unit (CPU) hardware and/or the compiler) that the
address of this type of data must be evenly divisible by some number. In the

example above, it was assumed that each alignment requirement is no more
restrictive than "even address" (divisible by two). Thus, the implementation
above occupies 28 bytes. However, such an assumption does not promote
portable code because not all hardware and/or compiler alignment requirements
(or even storage requirements) are the same.

Therefore, the numeric values of structure offsets may not be hard-coded. The
values may be different in each environment. Refer to members by their
symbolic member names only.

3.6.2.2.6.2 Structures for Information Hiding. One of the important uses for
C structures is to encapsulate interface information. Consider, for example,
the FILE structure provided by the standard I/O library. On many systems, the
header stdio.h defines the name FILE thus:

3-69

#define FILE struct -file
struct _file

char * curptr; /* where to get/put the next character: !NULL */
int _size; /* how big is the buffer: (O:INT MAX) */

char *-buffer; /* where is the buffer: char[_size] I NULL */
int _rcount; /* how many more gets left: (0: size) */
int _wcount; /* how many more puts left: (0:_size) */

char _status; /* file state: bits */
char fd; /* file descriptor: (0: NFILES-I) */
1;

Thus, the name FILE becomes a synonym for the type struct _file. The tag name
(_file) and each of the member names (_curptr, _size, etc.) are given names
that start with a leading underscore. Names with leading underscore may only
appear in code that is privy to the internal details of the associated data
structure, not in "user-level" portable code.

The main advantage of this defined-type approach is that the internal details
of the representation are somewhat more "hidden" from the functions that use

the type. This allows the internal details to be tailored to each particular
target system, or to be changed to incorporate more efficient algorithms when
needed. Furthermore, those functions that do not examine the internal

representation of the object need no source code changes if the object is
changed from a structure to a scalar (or to a union).

Use the "leading underscore" name format for tag and member names if the

internal details of the structure are not to be inspected by functions outside
of the package. Conversely, leading underscore may not be used if the details
of the structure are available for inspection by functions that use the

structure.

3.6.2.2.6.3 Properties of Structures. In the absence of a specific defining
property, a structure is well-defined if all its scalar constituents are well-

defined. Referring back to definition of the PART structure (see subparagraph
3.6.2.2.6.1), in order for a PART to be well-defined, all of the following

must be true:

partNo must be a (null-terminated) string
leadTime must be within the range (0:99)
unitMeas must contair the string "each", "lb", or "box"
unitCost must be within the range (0.00:9999.99)

costQty must be within the range (0:9999)

One of the common abbreviations allowed by C is the initialization of a

structure to "all zeros":

PART partl - (0);

3-70

Thus, if a structure is not well-defined when initialized to zero, document
that fact in a comment. However, it must be noted that the program would be
much simpler if the members are defined such that the zero-initialized

structure is well-defined.

3.6.2.2.6.4 Bit-Fields. C provides a storage-compaction capability for
structure members in which each member occupies only a specified number of
bits. Such a member is known as a bit-field. Bit-fields are useful for

reducing the storage needed for a large array of structures and are also quite
useful for defining various hardware interfaces which specify the individual
bits within a machine word.

The following representation may be used for the time-of-day in hours,

minutes, seconds and milliseconds:

TimeOfDay.h(#l):
/* TimeOfDay.h - bit-field structure for hh:mm:ss.fff */
#ifndef TimeOfDay_h
#define TimeOfDayh

typedef struct timeOfDay

unsigned hl : 2; /* tens digit of hours (0:2) */

unsigned h2 : 4; /* units digit of hours (0:9) */
unsigned ml : 3; /* tens digit of minutes (0:5) */
unsigned m2 : 4; /* units digit of minutes (0:9" */
uns'gned sl : 3; /* tens digit of seconds (0:5) */
unsigned s2 " 4; /* units digit of seconds (0:9) */
unsigned fl : 4; /* first digit of fraction (0:9) */
unsigid f2 : 4; /* second digit of fraction (0:9) *7

unsigned f3 : 4: /* third digit of fraction (0:9) */
) timeOfDay;

#endif

Each member (bit-field) is declared to be unsignad (int) since this is the
only bit-field type that is guaranteed to be portable to all current

compilers. Each member is declared to have only as many bits as aru necessary
to represent the possible digits at its position in the time representation.

Representing hl takes only two bits to represent the possible values (0, 1,
and 2). The largest members need only four bits to represent ten digits (0
through 9). Thus, the total number of bits is 32.

Consecutive bit-field members are allocated by the compiler to the same int-
sized word, as long as they fit completely. Thus, on a 32-bit machine, a

timeOfDay object will occupy exactly one int-:ized word. On a 16-bit machine,
the first five members (totalling 16 bits) will fit into one int-sized word.
and the last four members will fit into an immediately following word. Such
an exact fit is rare, however. Add another member such as "day-of-veir" to

the structure, and the nice size-fitting property disappears. Thus, bit-
fields are useful for storage-saving only if they occuly most or all of the

0 3-71

RD-2U 35-SFMR-T N Ditiu
I - GRAPHICS PROGRAN(U) JOINT DATA SYSTEMS SUPPORT CENTER

WASHINGTON DC D U HALL 01 DEC 90 DCR/JDSSC-TM-405-90

UNCLASSIFDCRD -DCJS F/G 12/5 NL

sonEEEEEh

a , - -,

111 I. * I D ir

1 .15 L

space on an int, and if the storage-saving property is to be reasonably
portable, they must occupy most of the space in a 32-bit integer.

The order of allocation within a word is different in different
implementations. Some implementations are "right-to-left" where the first
member occupies the low-order position of the word (most PDP-11 and VAX
compilers) but most other implementations are "left-to-right."

Thus, to ensure code portability, do not depend upon the allocation order of
bit-fields within a word.

3.6.2.2.6.5 Pointers to Structures. Passing and returning structures can
cost considerable CPU time since the entire structure is copied each time.
Often it is more efficient to pass a pointer to a structure. The declaration

struct part *partPtr;

declares that partPtr points to struct part's. To access the members of the
structure that partPtr points to, use the "arrow" (->) operator, as shown
below:

partPtr -> lead-time

As discussed in subparagraph 3.6.2.2.5.2, a pointer value can be either
undefined (not valid in any pointer contexts), or defined (either NULL or
pointing to a valid object of the proper type). If a pointer points to a
well-defined structure, the pointer is well-defined.

Since one of the common uses of pointers to structures is as function
parameters, their reliable usage is of prime importance to portability. As a
simple case, an "out" pointer (used only to modify the pointed-to object) does
not care what properties the object has when its address is passed to the
function. It is usually an error t pass NULL to an "out" parameter, since it
does not point to any object (a NULL parameter could be used to mean "do not
store anything this time," but an explicit comment must be given). An "in"
pointer (assd only to read values from the pointed-to object) should be passed
to the address of a well-defined" structure. If, however, the structure is
supposed to have some other defined property, the parameter declaration must
so indicate in a comment. The same conditions apply to an "in-out" pointer
(used both to read values from, and change values in, the pointed-to
structure).

Thus, for parameters which are pointers to structures, an "out" pointer
parameter is assumed to be non-NULL, pointing to the storage for a structure
of the spe-ified type. "In" and "in-out" pointer parameters are assumed to
point to a well-defined structure of the specified type. Any exceptions to
these assumptions must be noted in a comment on the parameter declaration.

3-72

3.6.2.2.7 Dynamic Storage Allocation. Data structures which dynamically grow
and shrink as the computation progresses are provided through two functions:
malloc and calloc. If a request for allocated memory asks for more bytes than
are available in the heap, either function returns a NULL pointer. Thus, the
returned pointer must always be tested to ensure that it is non-NULL.

3.6.2.2.7.1 Freed Storage. When allocated storage has been used and is no
longer needed, it can be returned to the heap by the free function:

free(px);

The above example returns to the heap the storage which px is pointing to.
Note that each time storage is allocated, the allocation functions record
internally the size that was given to this allocation. When free is called,
this internally recorded size is used to determine the amount of storage that
is being given back.

One of Lhe important reliability aspects of aynamic allocation is the
avoidance of dangling pointers. After calling free(px), the pointer px should
be considered to have an undefined value. The pointer does still contain a
valid machine address but the storage that it points to may subsequently be
allocated to some other use. One useful style convention is to immediately
assign NULL to a pointer aftcr passing it to the free function:

free(px);
px - NULL;

I In some environments, this will ensure that any further access using px will
generate an execution error. In any environment, it will produce a warning
that px should not be used to access data.

Since more than one pointer may be pointing to the freed storage, the
programmer must determine how many pointers are pointing into the freed
storage when a pointer p is passed to the free function (this number is known
as the "reference count" of the storage). Steps must be taken (such as
assigning NULL) to ensure that none of these pointers are subsequently used to
access the freed storage.

3.6.2.2.7.2 Dead Storage. The continued use of a pointer to freed storage
(dangling pointer) has a complementary problem known as dead storage--the
failure to free a chunk of storage when it is no longer needed. A few
isolated cases of dead storage are unlikely to be noticed; the storage
available is simply decreased. But as the dead storage begins to accumulate,
the odds increase that the program will run out of allocatable storage.

Therefore, for every instance in which a programmer allocates storage, there
must be a corresponding call to the free function to return that storage to
the heap.

13-73

3.6.2.2.8 Opening Named Files. To perform text-based I/0 on files opened by

name, the function fopen is used:

FILE *fp;

fp - fopen("input.dat", "r");

The above example opened the file input.dat for reading ("r") and the variable
fp was declared as a pointer to FILE. After the fopen call, fp will point to
a FILE properly initialized for reading. If the open fails, fp will contain a
NULL pointer.

Thus, always test the returned value from fopen to ensure that the open
succeeded.

However, should the I/O required of a named file be binary (non textual) in
nat-re, the file =ho,! bp opened with a call to the open function. In this
manner, file access is significantly faster because the overhead associated
with text-based I/O is bypassed.

3.6.2.2.9 Clean Compilations. C code developed for projects in the JNGG
Graphics Program are required to compile and link error-free and warning-free.

3.6.2.3 Format Guidelines. The following subparagraphs specifically
delineate the guidelines to be used in C source code generation. These
guidelines are grouped into the following topics: lexical elements;
declarations and types; names and expressions; statements; functions; and
files.

3.6.2.3.1 Lexical Elements. The text of a program consists of the texts of
one or more compilations. The text of each compilation is a sequence of
separate lexical elements. Each lexical element is -ither P delimiter, an
identifier (which may be a reserved word), a numeric literal, a character
literal, a string literal, or a comment. Each lexical element must fit on one
line, since the end of a line is a separator.

3.6.2.3.1.1 Indentation. The standard indentation is two spaces.

3.6.2.3.1.2 Character Set. Full use should be made of the ISO character set
where available. Alternate characLer replacements should only be used when
the corresponding graphical symbols are not available.

3.6.2.3.1.3 Uppercase/Lowercase. Reserved words should appear in lowercase.
Type, user-specified variable names, and enumeration value identifiers should
adhere to the naming rules specified in subparagraphs 3.6.2.3.1.4 and
3.6.2.3.3.1.

3.6.2.3.1.4 Identifiers. When specifying identifiers in source code, the
following rules must be utilized:

3-74

a. Identifier names should be meaningful and easily distinguishable from
each other, except possibly for loop parameters, array indices, and
common mathematical variables, which may be as short as only one
character.

b. In #define's, distinct words in identifierS should always be
separated by underscores _

c. The use of abbreviations in identifiers should be avoided. When
used, an abbreviation should be significantly shorter than the word
it abbreviates, and its meaning should be clear. The same
abbreviations should be used consistently throughout a project and
must always be approved by the contractor Project Manager in advance
of its usage (final approval by the Government Project Officer).

3.6.2.3.1.5 Spaces. Single spaces should be used consistently between
lexical elements to enhance readability.

3.6.2.3.1.6 Blank Lines. Blank lines should be used to group logically
related lines of text and a blank line should always follow a construct whose
last line is not at the same indentation level as its first line.

3.6.2.3.1.7 Continuations. Statements extending over multiple lines should
always be broken BEFORE reserved words, operator symbols, or one of the
following symbols:

but they should be broken AFTER a comma (","). Unless otherwise specified in
later guidelines, all the continuation lines should be indented at least two
levels -- this is, four spaces -- with respect to the original lines they

continue.

Long strings extending over more than one line should be broken up at natural
boundaries, appropriate to the meaning of the contents of the string, if any.

3.6.2.3.1.8 Comments. Comments should begin with the "/*" aligned with the
indentation level of the code that they describe, or to the right of the code,
aligned with other such comments.

3.6.2.3.2 Declarations and Types. The following subparagraphs provide format
guidelines relevant to commenting, indentation, enumeration types, and object
declarations.

3.b.Z.2.2.1 Commenting. Type declarations (or groups of declarations) should
be commented to indicat.' whqt is being defined, if that is not obvious from
the type declaration itself.

I 3-75

Object declarations should be commented if the object definition is unclear
from the object and type identifiers alone. Note that those properties of an
object obtained from its type should not be repeated in comments on the object
declaration.

3.6.2.3.2.2 Indentation. All declarations in a single declaration part
should begin at the same indentation level.

3.6.2.3.2.3 Enumeration Types. Long enumeration type declarations should be
formatted into easily readable columns.

3.6.2.3.2.4 Object DeclF-itions. Object declarations should utilize the
conventional format described in subparagraph 3.6.2.2.4.1.1 for declaring
variables. Further, they should utilize comments in accordance with the
guidelines of subparagraphs 3.6.2.2.4.1.3 and 3.6.2.3.2.1.

All such declarations textually grouped together or appearing as components in
a record structure (see subparagraph 3.6.2.2.6.1) should have their
<declarators>, "-", and "/*" symbols aligned.

3.6.2.3.3 Names and Expressions. Objects should usually be nouns or noun-
phrases that describe the object's qualities or purpose. The following
subparagraphs discuss names, parentheses, and continuation lines.

3.6.2.3.3.1 Names. Names which are all uppercase and contain underscores to
separate words shall be used to denote #define or any macro:

#define BUTTONSPACING 10

Variable names shall have initial lowercase, capitalize the first letter of
the remaining words, and contain no underscores:

Widget databaseList;
int numberButtons; /* Number of buttons counter */

3.6.2.3.3.2 Parentheses. Syntactically redundant parentheses should
generally be used to enhance the readability of expressions, especially by
indicating the order of evaluation.

3.6.2.3.3.3 Continuation. When a long expression is broken over more than
one line, it should be broken near the end of the line before an operator
symbol with the lowest reasonable precedence.

3.6.2.3.4 Statement Sequences. Blank lines should be used liberally to break
sequences of statements into short, meaningful groups.

3.6.2.3.5 Functions. A function is an independent set of statements for
perfeTing some computatioi.

3-76

3.6.2.3.5.1 Function Names. Except as indicated below, a function name
should be an imperative verb phrase describing its action. The following
guidelines shall be used when naming a function:

a. Names shall have initial uppercase letters, capitalize the first
letter of each word, and contain no underscores.

ObtainNextToken
IrrementLineCounter
MakeNewGroup

b. All functions shall have an explicit type.

c. If the function iq a "callback," it shall be a noun phrase and end
with the capitalized letters "CB." An exception to this guideline is
that "callback" functions may assume the labels of the menu
selections needed to access that function and end with the "CB"
designator. This exception invariably leads to a verb phrase name.

FileDeletionOkCB
OpenQueryCancelCB
MagicExitCB

d. Functions that create widgets shall begin with "Create" as the first
word; other functions should avoid using "Create" as the first word.

Widget CreateDatabaseList (;
void NotDoneCB ();

e. Non-BOOLEAN valued function names may be noun phrases.

TopOfStack
TheComponent
Successor
SensorReading

f. BOOLEAN valued functions should have predicate-clause names.

StacklsEmpty
LastItem
DeviceNotReady

Files names must specify a name in a format acceptable to the host system, and
systems differ in their naming rules for files. In general, a name in the
form xxxxxx.xxx, where x is a letter or a digit, will be acceptahle to most C
environmeLits. Within this length and composition constraint, the name should
strive to represent the program unit name to the maximum extent allowable.

3-77

3.6.2.3.5.2 Function Header. Each function should be preceded by a CSU
header comment block containing the documenting information as described and
shown in example form in figure 3-4.

3.6.2.3.5.3 Function Definitions. Function definitions should have one of
the following formats:

<function name:>
Ktype marl>- <fu-ction name> (<param spec>)

---.-.--------------------

<function name:>
<type mark> <function name> (<param spec>) <params decl>

..

<function name:>
<type mark> <function name> (<param spec>) <params decl> <block>

If the function does not return any value, the <type mark> must be specified
as void. If it does return a value, that value must be a scalar. C does not
allow a function to return an array, for example. Beyond the mandatory usage
of the <type mark>, precision regarding that type is also important,
especially in relation to the size of the data being returned.

Guidelines pertaining to the <function name> have been previously discussed in
subparagraph 3.6.2.3.5.1.

The <param spec> is the optional part of the syntax where parameters are
declared--the local variables of the function which contain the argument
values when they are passed. If utilized, the parameter specifications must
appear in parentheses.

The optional <block> clause completes the function definition. It is
comprised of a left-brace, zero or more declarations, zero or more statements,
and a right-brace. If this function calls other functions, there should be a
declaration for each of these called functions, such as exp and log shown
below. This means that the type of a function is always declared in two
separate places--once in the calling function, to say what type it expects
from th- called function, and once in the definition of the called function,
to say what type it will indeed return.

An example of a function definition appears below:

pow:
/* pow - return (positive) x to the power y */
double pow(x, y)

double x; /* base */
double y; /* exponent */

double expo; /* exponential function */
double logo; /* natural log function */

3-78

p

/* Unit Name: CreateBgChoiceFormI* */
/* CSU Id:

/* */

/* Input:

/* parent - the widget ID of this form's parent. */

/* Processing: */

/* This CSU creates the form widget for the Bg choice screen. */

/* Output: */

1* bgChoiceForm - global, the widget ID of the insert group form. */

/**t*********

Figure 3-4. C Language Header Comment Block (CSU)

3-79

return (exp(log(x) * y));

3.6.2.3.6 Files. Files allow Lhe specification of groups of logically
related entities. In their simplest form, files specify pools of common
object and type declarations. More generally, files can be used to specify
groups of related entities including functions (through prototypes, that can
be called from outside the file, while their inner workings remain concealed
and protected from outside users.

3.6.2.3.6.1 File Names. A file name should be a noun phrase describing the
abstract entity modeled by the file, or simply whatever is being packaged.
The file name is also the CSC name for configuration management purposes. The
following are some examples:

StackHandler
VehicleController
TerminalOperations
ParserTypes
UtilitiesPackage

3.6.2.3.6.2 File Header. Each file should be preceded by a C language CSC
header comment bloc: as shown in figure 3-5.

3.6.3 FORTRAN Language Coding Specifications. New FORTRAN-based source code
(either new applications, enhancements, or maintenance-based patch code) shall
comply (wherever possible) with the provisions and guidelines of JDSSC's
FORTRAN Programming Standards (JDSSC TM 402-90).

3.6.4 General Languagze Coding Specifications. This subparagraph specifies
default design and coding standards to be used when Ada, C, and FORTRAN are
not the programming languages being used to develop code.

3.6.4.1 Higher Order Language (HOL). All code shall be written in the HOL
specified in the appropriate specification document:

a. Functional Description (FD)

b. System/Segment Specification (SSS)

c. Software Requirements Specification (SRS).

If one or more compilers are specified in the specifications listed above,
then all code shall be compiled by the specified compiler(s). Otherwise, all
code shall be compiled by the compilers described in the appropriate SDP.

If the HOL does not contain the control constructs of subparagraph 3.6.4.2,
the pre-compiler (if any) specified in the appropriate SDP shall be used. If
a pre-compiler which is acceptable to JNGG does not exist, then these control
constructs shall be simulated (i.e., code in the language used shall follow

3-80

/* File Name (CSC) : BgChoiceOperations */

/* CSC Id
/* *1

/* Author Geoff Raines

/* Create Date 05/11/90
/* */

/* Revision History:

06/30/90 GR <Summarize exactly what changes were done and why>. */

/* Purpose:
/* Explain what this unit does to support the CSCI. */

/* Headers Accessed:
/* <stdio.h> - needed for the definition of FILE

/* <ctype.h> - needed for the routine isspace() *1
/* "UnixFileSystemTools.h" - needed for the routine Determine Inode */

Type and its definitions. */
/* *

/* Externed Objects Used:
/* magicShell - this Widget is used to attach the Widgets created in */

Bg. */

/* Hardware Dependencies:
/* List the access type, purpose, and justification for any, */
/* such as: registers, memory, bulk storage, ports, and machine */

-) de. */* *

/* Compiler Dependencies:
/* List any special requirements and their justification, such

/* as: special pragmas, optional implementation, and specific

/* compilers.I* *
/*** *

Figure 3-5. C Language Header Comment Block (CSC)

3-91

the logic of thr constructs without explicitiy using their names in the code).

If language simulation is used, the same form of the simulated constracts
shall be uniform'y pplied throughout the code.

A waivei from JNGG Branch Management shall be required in order to write code
in assembly language or in some. HOL other than the HOL specified in the
documents listed above.

3.6.4.2 Control Constructs. Code shall be written using only the following
control constructs:

a. SEQUENCE

b. IF-THEN-ELSE

c. DO-WHILE

d. DO-UNTIL

e. CASE.

These control constructs refer to the control logic within a CSU/program while
it is executing and do no, preclude the calling or passing of processor
control to other CSUs/programs (e.g., exception handlers, interrupt service
routines).

3.6.4.3 Modularity. The source code £- each CSU/prograw shall not exceed
200 executable, non-expandable statements. Additionally, CSUs/programs shall
exhibit the following characteristics:

a. Local variables within different CSUs/program- hall not share the
same storage locations.

b. Each CSU/program shall perform a single function.

c. Modification of a CSU's/program's code during execution shall be
prohibited.

d. Each CSU/program shall be uniquely named.

e. All CSUs/programs shall follow a standard format consisting of
prologue, declarative 3tatements, and executable statements or
comments, in that order.

f. Except for error exits, each CS/program shall have a single entry
point and a single exit point.

g. Coding style conventions shall be consistent among all CSUs/programs.

3-82

3.6.4.4 Symbolic Parameters. To the maximum extent practical, symbolic
parameters shall be used, in lieu of spe:ific numeric values, to repre:2nt
c~nstants, relative location ;ithin a table, and size of data structure.

3.6.4.5 Naming. Naming conventions shall be uniform throughout the
CSCI/module and shall employ meaningful names which clearly identify the

constant, variable, fu--tior perfo)rmed, and any other objects used in the
CSCl/module, to a reader of the source code. Language keywords shall not be

used as identifiers.

3.6.4.6 Mixed-Mode Operations. Mixed-mode operations shall be avoided (e.g.,
arithmetic between real numbers and integer numbers). However, if it is
necessary to use them, they shall be clearly identified and described using
prominent comments within the source code.

3 6.4.7 Paragraphing, Blocking, and Indenting. Paragraphing, blocking by
blank lines, and indenting shall be used to enhance the readability of the

code. The indenting factor used shall be two spaces.

3.6.4.8 Complicated Expressions. Compound negative Booiean expressions shall
be prohibited. Nesting beyond fi'e levels should be avoided.

3.6.4.9 Compound Expressions. The order ot evaluation for coinpound

expressions shall be clarified through the use of pareiitheses and spacin.

3.6.4.10 Single Staement. Each line of source code shall contain, at most,

one executable statement.

3.6.4.11 Comments. Comments shall be set off from the executable source code
in a -.iforn, manner. Before each CSU's/program's executable section, a
prologue section shall Aescribe the following details:

E The CSU's/program's purpose and how it works

b. Functions, performance requiremcnts, and external interfaces of the

CSCI/module that the CSU/piogram helps implement

c. Other CSUs/programs (subroutines, procedu-es, functions) called and

the calling sequence

d. Inputs and outputs, including data files referenced during
CSU/program entry or execution (for each refercnced file, the name of

the file, usage (input, output, or both), and a brief summary of the

purpose for referencing the file)

e. Use of global and local variables and, if applicable, registers and

memory locations

f. The identification of special tasks that are internally defined, and

the size/structure of which are based on external requirements

3-83

g. The programming department or section responsible for the CSU/program

h. Date of creation of the CSU/program

i. Date of latest revision, revision number, problem report number, and
title associated with the revision.

3.6.4.12 Error and Diagnostic Messages. To the maximum extent practical, all
error and diagnostic messages shall be presented in a uniform manner and shall
be self-explanatory. They shall not require the operator to perform table
look-ups or further processing of any kind to interpret the message.

3.6.5 Programming Languages and Graphics Standards. All software development
is to be accomplished using the Ada, C, or FORTRAN programming languages. All
graphics processing will utilize the Graphical Kernel System (GKS), X
Windows/Motif, Microsoft Windows, or the Programmer's Hierarchical Interface
Graphics System (PHIGS). Support for metafile conversions to Data Interchange
Format (DIF) format will also be supported. Specific waivers to these
programming language and graphics standards must be approved by the
Configuration Control Board (CCB).

3.6.6 Diagramming Symbology and Standards. The use of symbology to
graphically depict the control flow, data flow, and hierarchical structure of
software development is critical to ease understanding of the - ess both
from a developer's standpoint as well as the Government. To aid and support
this goal, a standardized set of approved symbols and the methodology behind
their use is paramount. This section will accomplish that purpose.

Software development for projects comprising the JNGC Graphics Program will
make use of two separate classes of symbology:

a. Gane and Sarson approach (tailored)

b. Booch diagrams.

The tailored Gane and Sarson style is well-suited to depict control and data
flow relationships between CSCIs, CSCs, or even CSUs. Based upon a limited
set of sample, easily-remembered symbols, this approach offers a clear and
concise, yet elegant, method to graphically show such information. The
standard set of metasymbols to be used for this approach is illustrated in
figure 3-6.

Alternately, Booch diagrams are an excellent tool for graphically depicting
programmatic design structures in the context of an Ada-based topology. The
standard set of metasymbols to be used for Booch diagrams is a far richer set
and illustrates both the concept of a specific program unit as well as
something about its design. For instance, a CSCI in the design may be
conceived as an Ada package structure which, in Booch diagrams, can be
depicted as two symbols to illustrate both the specification and body portions

3-84

CompnentExternal Entity

Magnetic Storage

Suosystemr

DaaFo
DaDat Store

Figure 3-6. Cane and Sarson Metasymbols

S 3-85

of that Ada construct. Figure 3-7 shows the standard set of Booch symbols to
be used.

3.6.7 Documentation Standards. All documentation developed and delivered to
the Government for the JNGG Graphics Program shall conform to the guidelines
of the appropriate Data Item Description (DID), the appropriate development
standard (e.g., DOD-STD-7935A), and JDSSC PM 1-90 specifications. Printed
documentation shall be delivered in letter quality (laser printed is

preferable) using the Prestige Elite 1? pitch font and will be left-justified.

Final versions of documentation shall be delivered in both hardcopy version as
noted above and in WordPerfect 5.1 format on a 5.25 inch floppy diskette (DOS-
formatted) unless specifically tasked otherwise by a Statement of Work (SOW).
a Task Order (TO), or by the Contracting Officer's Representative (COR).

3.7 Formal Reviews

The JNGG Graphics Program will utilize a number of formal reviews and audits
the choice of which is relative to the type of software development being
conducted: full life cycle or rapid application development (RAD). Full life

cycle development is defined as being in accordance with the life cycles
described in DOD-STD-7935A or DOD-STD-2167A. This type of software
development will use the formal reviews and audits of MIL-STD-1521B:

a. System Design Review (SDR)

b. Software Specification Review (SSR)

c. Preliminary Design Review (PDR)

d. Critical Design Review (CDR)

e. Test Readiness Review (TRR)

f. Functional Configuration Audit (FCA)

g. Formal Qualification Review (FQR)

h. Physical Configuration Audit (PCA).

Software development that is RAD-based is designed to be more flexible and may
utilize any and all of the formal reviews/audits noted above. In many cases,
however, it may be more advantageous to capture the flexibility of the process
through a series of builds all being integrated into the predecessor and using
the following formal reviews:

a. In-Process Review (IPR)

b. Initial Operational Capability (IOC)

3-86

---- ut ter i c Gener i c

Susyte ISubpr ogr am Subprogram
Specification Body

Generic
Task)

Subpogra ------ Package
Subprogram Specification Scfcto

Spec ificationISpcfato

)Generic
TaskPaag

Subprogram Bacdag
Boody

Package Package

Specification Body

Figure 3-7. Booch Diagram Metasymbols

3-87

c. Final Operational Capability (FOC).

Agendas and minutes for all reviews and audits will be provided by using the
following DIDs for format and content guidelines:

a. DI-A-3029, Agenda - Design Reviews, Configuration Audits and
Demonstrations

b. DI-E-3118, Minutes of Formal Reviews, Inspections and Audits.

3-88

SECTION 4. NOTES

This section contains information of general interest which aids in
understanding this specification. Specifically, bibliography references to
include both source and issue date are provided as well as a terms and
abbreviations paragraph.

4.1 Bibliography

The following references were used in the preparation of this document:

a. American National Standards Institute (ANSI), Graphical Kernel System
(GKS) Functional Description, ANSI Standard X3.124-1985, New York,
NY, 24 June 1985

b. ANSI, IEEE Recommended Practice for Ada As a Program Design Language,
ANSI/IEEE Std 990-1987, New York, NY, 1 October 1987

c. ANSI, Programming Language C, ANSI Standard X3.159-1989, New York,
NY, 16 December 1989

d. ANSI, Reference Manual for the Ada Programming Lanuguage,
ANSI/MIL-STD-1815A, 17 rebruary 1983

e. Booch, Grady, Software Engineering with Ada, Second Edition, ISBN
0-8053-0604-8, The Benjamin/Cummings Publishing Company, Inc., MenlopPark, CA, 1987

f. Bruce, Phillip and Pederson, Samuel M., The Software Development
Project: Planning and Management, New York, NY, 1982

g. Charette, Robert N., Software Engineering Environments: Concepts and
Technology, ISBN 0-07-010645-2, Intertext Publications, Inc., New
York, NY, 1986

h. Data Interchange Format (DIF) Clearinghouse, DIF Technical
Specification, DIF-0283, Newton Lower Falls, MA, 1983

i. Department of Defense (DOD), Defense System Software Development,
Department of Defense Standard DOD-STD-2167A, Washington, D.C.,
29 February 1988

j. DOD, Defense System Software Quality Program, Department of Defense
Standard DOD-STD-2168, Washington, D.C., 29 April 1988

k. DOD, DOD Automated Information Systems (AIS) Documentation Standards,
Department of Defense Standard DOD-STD-7935A, Washington, D.C.,
31 October 1988

P 4-1

1. DOD, Software Standards and Procedures Manual, Data Item Description
(DID) DI-MCCR-80011, Washington, D.C., 4 June 1985

m. Joint Data Systems Support Center (JDSSC), Documentation Standards
and Publications Style Manual, Procedures Manual (PM) 1-90,
Washington, D.C., 1 August 1990

n. JDSSC. FORTRAN Programming Standards, Technical Memorardum (TM)
402-9,, Washington, D.C., 1 November 1990

o. JDSSC, Software Metrics Program, Procedures Manual (PM) 4-90,
Wasl'ington, D.C., I November 1990

p. JDSSC, Standards and Procedures for Software Projects, Procedures
Manual (PM) 2-90, Washington, D.C., I September 1990

q. Martin, James, Recommended Diagramming Standards for Analysts &
Programmers: A Basis for Automation, ISBN 0-13-767377-9, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1987

r. National Aeronautics and Space Administration (NASA), Ada Style Guide
(Version 1.1), SEL-87-002, Greenbelt, MD, May 1987

S. NASA, Assessing the Ada Design Process and its Implications: A Case
Study, SEL-87-004, July 1987

t. National Institute of Standards and Technology (NIST), POSIX:
Portable Operating System Interface for Computer Environments,
Federal Information Processing Standards Publication (FIPS PUB)
Number 151, 12 September 1988

u. Plauger, P.J. and Brodie, Jim, Standard C, ISBN 1-55615-158-6,
Microsoft Press, Redmond, WA, 1989

v. Plum, Thomas, C Programming Guidelines, ISBN 0-911537-03-1, Plum
Hall, Inc., New York, NY, 1984

w. Plum, Thomas, Reliable Data Structures in C, ISBN 0-911537-04-X,
Plum Hall, Inc., New York, NY, 1985

x. Pressman, Roger S., Software Engineering: A Practitioner's Approach,
Second Edition, ISBN 0-07-050783-X, McGraw-Hill Book Company, New
York, NY, 1987

y. United States Air Force (USAF), Agenda - Design Reviews.
Configuration Audits and Demonstrations, Data Item Description (DID)
DI-A-3029/S-105-1, Washington, D.C., 21 May 1971

4-2

z. USAF, Configuration Management Practices for Systems, Equipment.

Munitions, and Computer Programs, Military Standard MIL-STD-483A,
Washington, D.C., 4 June 1985

aa. USAF, Minutes of Formal Reviews. Inspections and Audits, Data Item
Description (DID) DI-E-3118/C-131-1, Washington, D.C., 26 February

1971

ab. USAF, Technical Reviews and Audits for Systems, Equipments, and
Computer Software, Military Standard MIL-STD-1521B, Washington, D.C.,

4 June 1985

ac. United States Department of Commerce, National Technical Information
Service (NTIS), The X Window System, MIT Laboratory for Computer

Science Technical Report Number MIT/LCS/TR-368, Cambridge, MA,

November 1986

ad. United States Navy (USN), A Tailoring Guide for DOD-STD-2167A,
Defense System Software Development, Military Handbook MIL-HDBK-287,
Washington, D.C., 11 August 1989

ae. USN, Configuration Control - Engineering Changes, Deviations and
Waivers, Military Standard Number MIL-STD-480B, Washington, D.C.,

15 July 1988

af. USN, Configuration Control - Engineering Changes (Short Form),
Deviations and Waivers, Military Standard MIL-STD-481B, Washington,
D.C., 15 July 1988

ag. USN, Configuration Status Accounting Data Elements and Related
Features, Military Standard MIL-STD-482A, Washington, D.C.,
1 April 1974.

4.2 Terms and Abbreviations

The following terms, abbreviations, and acronyms specific to this document are

listed below.

Ada ------------ The Ada computer language defined by ANSI/MIL-STD-1815A and

directed to be the DOD programming language
ADP ------------ Automated Data Processing
ANSI ----------- American National Standards Institute

CBSI ----------- Computer Based Systems, Inc.
CCB ------------ Configuration Control Board; the focal point for coordination

of all JNGG Graphics Program enhancement and change activity
CCI ------------ Configuration Control Item
CDR ------------ Critical Design Review as specified by MIL-STD-1521B
CDRL ----------- Contract Data Requirements List

CIA ------------ Central Intelligence Agency

CINCPAC -------- Commander-in-Chief, Pacific

S 4-3

Class I Change - An engineering change which affects the contractmally
specified form, fit, or function of a configuration item as
defined by MIL-STD-480B.

Class II
Change --------- An engineering change which does not fall within the

definition of a Class I change such as: a change to
documentation only or a change in hardware which does not
affect any Class I determination factor as specified in
MIL-STD-480B.

CM -------------- Configuration Management
Configuration
Identification - The current approved or conditionally approved technical

documentation for a configuration item as set forth in
specifications, drawings, and associated lists, and documents
referenced therein

Configuration
Item ----------- Hardware or software, or an aggregation of both, which is

designated by the contracting agency for configuration
management

COR ------------- Contracting Officer's Representative
COTS ----------- Commercial Off-The-Shelf
CSC ------------ Computer Software Component; a functional or logically

distinct part of a CSCI which can be furtlier subdivided into
additional CSCs and/or CSU,

CSCI ----------- Computer Software Configuration Item
CSU ----------- Computer Software Unit

CUC ------------ Common User Ccntract
DATSEL --------- Data Selection Module of GIPSY
DBMS ----------- Database Management System
DCA ------------- Defense Communications Agency
DCEC ----------- Defense Communications Egineering Center
Development
Configuration -- The contractor's software and associated technical

documentation that defines the evolving configuration of a
CSCI during development; it is under the development
contractor's configuration control and describes the software
configuration of the design, coding, and testing effort

DI ------------- Data Item
DIA ------------- Defense Intelligence Agency
DID ------------- Data Item Description
DISPLA ---------- Business Graphics Module of GIPSY
DOD ------------ Department of Defense
DOD-STD --------- Department of Defense Standard
DOS ------------ Disk Operating System
DMS ------------ DeLorme Mapping System
ETC ------------ Enhanced Terminal Capability
FCA ------------ Functional Configuration Audit as specified in MIL-STD-1521B
FD ------------- Functional Description as defined by DOD-STD-7935A and its

associated DID # DI-IPSC-80689

4-4

FIPS PUB -------- Federal Information Processing Standards Publication

Formal Test ---- A test conducted in accordance with test plans and procedures
approved by the contracting agency and witnessed by an

authorized contracting agency representative, to show that

the software satisfies a specified requirement

FORTRAN -------- The FORTRAN programming language as defined by ANSI X3.9-1978
GDRMOD ---------- Generalized Data Reports Module of GIPSY

GEOMOD --------- Geographic Mapping Module of GIPSY
GFSC ------------ Goddard Space Flight Center in Greenbelt, Maryland

GIPSY ----------- Graphic Information Presentation System; also the Executive
Module of the GIPSY System

GKS ------------- Graphical Kernel System as defined by ANSI X3.124-1985

GMPS ------------ GIPSY Metafile Processing Subsystem; a now defunct GIPSY
subsystem

GUI ------------ Graphical User Interface
HIS ------------ Honeywell Information Systems

HOL ------------ Higher Order Language (e.g., Ada, FORTRAN, C)
HWCI ----------- Hardware Configuration Item

M1CC3------------Generic term for the family of Honeywell mainframe computers
that include the HIS 6080--the WWMCCS host platform

IBM ------------- International Business Machines, Inc.

IEEE ----------- Institute of Electrical and Electronics Engineers

Informal Test -- Any test which does not meet all requirements of a formal
test

IOC ------------ Initial Operational Capability
IPR ------------- In-Process Review

IR ------------- Software Release Incident Report

ISBN ------------ International Standard Book Number
IV&V ----------- Independent Verification and Validation
I/O ------------- Input/Output

JDSSC ---------- Joint Data Systems Support Center
JN ------------- NMCS ADP Directorate

JNG ------------- General Applications Division

JNGG ------------ Information Systems Branch
JOPES ---------- Joint Operation Planning and Execution System

JPM ------------ Joint Program Manager

JPMO ------------ Joint Program Management Office
JSMS ----------- Joint Staff Mapping System

Kbyte ---------- 1,024 bytes of data
LCS ------------ MIT Laboratory for Computer Science

MAGIC ---------- Mapping and Graphic Information Capability

Mbyte ---------- 1,024,000 bytes of data

MCCR ----------- Mission-Critical Computer Resources

MIL-HDBK ------- Military Handbook

MIL-STD -------- Military Standard
MIT ------------ Massachusetts Institute of Technology

MTXGEN ---------- Matrix Generation Module of GIPSY

NASA ----------- National Aeronautics and Space Administration

NIST ----------- National Institute of Standards and Technology; formerly the

National Bureau of Standards

S 4-5

NMCS ----------- National Military Command System
NORAD ---------- North America Air Defense Command
OSD ------------ Office of the Secretary of Defense
PCA ------------ Physical Configuration Audit as specified in MIL-STD-1521B

PDL ------------ Program Design Language
PDR ------------ Preliminary Design Review as specified by MIL-STD-1521B
PM -------------- Procedures Manual
RAD ------------ Rapid Application Development

RCL ------------- Release Capability List

RP ------------- Release Plan as specified in JDSSC PM 1-90
SCMP ----------- Software Configuration Management Plan as specified in

DOD-STD-2167 and its associated DID / DI-MCCR-80009
SDD ------------ Software Design Docuaent as specified in DOD-STD-2167A and

its associated DID # DI-MCCR-80012A
SDF ------------- Software Development File; a repository for a collection of

material pertinent to the development or support of software
SDL ------------ Software Development Library; a controlled collection of

software documentation, and associated tools and procedures
used to facilitate the orderly development and subsequent

support of software
SDP ------------- Software Development Plan as defined in DOD-STD-2167A and its

associated DID #/ DI-MCCR-80030A
SDR ------------- System Design Review as specified in MIL-STD-1521B
SEL ------------- Software Engineering Laboratory; an organization sponsored by

NASA/GSFC

SLOC ------------ Source line of code; an 80-byte record processible by the
computer that includes comments, executable code, and

non-executable code (i.e., declarations and blank lines)
SOW ------------ Statement of Work

SPCR ------------ Software Problem/Change Report as specified in MIL-STD-483A
SQA ------------- Software Quality Assurance
SQL ------------ Structured Query Language as specified by ANSI X3.135-1986
SQPP ------------ Software Quality Program Plan as specified by DOD-STD-2168

and its associated DID # DI-QCIC-80572
SRS ------------ Software Requirements Specification as defined by

DOD-STD-2167A and its associated DID # DI-MCCR-80025A
SSPM ------------ Software Standards and Procedures Manual as defined by

DOD-STD-2167 and its associated DID (DI-MCCR-80011)
SSR ------------- Software Specification Review as specified in MIL-STD-1521B
SSS ------------ System/Segment Specification as defined by DOD-STD-2167A and

its associated DID # DI-CMAN-80008A
STP ------------ Software Test Plan as specified in DOD-STD-2167A and its

associated DID # DI-MCCR-80014A
SYNTAX ---------- Syntax Module of GIPSY

TM ------------- Technical Memorandum as specified in JDSSC PM 1-90
TO ------------- Task Order

TPLOT ---------- Terra Plot System
TR -------------- Technical Report

TRR ------------ Test Readiness Review as specified in MIL-STD-1521B
TSR ------------ Technical Support Requirement

4-6

Union ---------- A C language structure (struct) in which all the offsets are
zero; all members of a union start at byte zero of the
object's storage and occupy the same space

USAF ----------- United States Air Force
VIP ------------ Visual Information Projector
WBS ------------ Work Breakdown Structure
WIS ------------ WWMCCS Information Systems
WITS ----------- WWMCCS Intelligent Terminal System; a now defunct system that

executed on the WSGT
WSGT ----------- The now defunct WWMCCS Standard Graphic Terminal; the Aydin

5807 processor
WWS ------------ WAM Workstation; previously known as the WIS Workstation

4-7

THIS PAGE INTENTIONALY LEFT BLANK

4-8

DISTRIBUTION

Addressees Copies

JDSSC Codes
JTSA-P (Record and Reference Set) 3
JNCG...................................45

Defense Technical Information Center (DTIC)
Cameron Staj-on, Alexandria, VA 22304-6145. 2

50

5-I

THIS PAGE INTENTIONALLY LEFT BLANK

5-2

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

Pu1 0 'eO ~r!'C 04 ,en to r " In lemt on of nyormaK'on % i -s at-a TC a.Stacn our oer '.pCre ,aUCn . i9,I tit" Gor r .t-n Iotu-Ctt-1 :earcnan' n a wirce,
3a -tna-nin ch'axa ane-leoel~ at ze rn' ao' - - -' Vt, of neMon C ,,.ro Sl rm ,, na s-raan owdes OllO lmafe Dr 4 , mte, aDSOCC of ts

COie'l", 't t 1" W 10 n' tO'nq qgesu o Io to su ,lt C 1 nn ' Vur %atqtjon eaaau.jnter% Ser-ces Dre-torate for nfo tioatOrt Ont at % an Renoris 2 !5 ertfson
C,.n" a sre 12"4 ri-tn, rcn 2 -2202-302 an ro tP, -3* M,.j)t nyrt, 3no 3u,;e! noersorkt Rouc-.,o P.oet O?C4-086) Wasn-lon lDC ;0503

1. AGENCY USE ONLY (Leave i)anK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 December 1990 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Software Standards and Procedures Manual for the

JNGG Graphics Program

6. AUTHOR(S)

David W. Hall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Joint Data Systems Support Center (JDSSC)

Room BF670C, The Pentagon

Washington, D.C., 20301-7010 TM 405-90

9. SPONSORING: MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This Software Standards and Procedures Manual (SSPM) contains the standards,
procedures, guidelines, and restrictions to be used in the development

of software for the JNGG Graphics Program.

The major section of the SSPM is section 3 (Software Standards and Procedures).

That section is divided into seven major subsections. These subsections

include software development tools, techniques, and methodologies (paragraph 3.1);

critical lower-level Computer Software Component (CSC) and Computer Software

Unit (CSU) selection criteria (paragraph 3.2); software development library

(paragraph 3.3); software deveiopment files (paragraph 3.4); documentation

formats for informal tests (paragraph 3.5); design and codinq standards

(paragraph 3.6); and formal reviews (paragraph 3.7).

14. SUBJECT TERMS 15. NUMBER OF PAGES
121

N16. PRICE CODE~N/A

17 SECURITY CLASSIFICATICN 8 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF A~BSTRACT

Unclassified Unclassified Unclassified None

C- 1

